Skip to main content
Log in

Light dark matter searches with positrons

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We discuss two complementary strategies to search for light dark matter (LDM) exploiting the positron beam possibly available in the future at Jefferson Laboratory. LDM is a new compelling hypothesis that identifies dark matter with new sub-GeV “hidden sector” states, neutral under standard model interactions and interacting with our world through a new force. Accelerator-based searches at the intensity frontier are uniquely suited to explore it. Thanks to the high intensity and the high energy of the Continuous Electron Beam Accelerator Facility (CEBAF) beam, and relying on a novel LDM production mechanism via positron annihilation on target atomic electrons, the proposed strategies will allow us to explore new regions in the LDM parameters space, thoroughly probing the LDM hypothesis as well as more general hidden sector scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This work is based on Monte Carlo simulations and does not include measured data. We did not consider of public interest to deposit the simulated data related to this manuscript.]

Notes

  1. \(m_{A^\prime }\) is the dark photon mass and \(m_e=0.511\) MeV/c\(^2\) is the electron mass.

References

  1. G. Arcadi, M. Dutra, P. Ghosh, M. Lindner, Y. Mambrini, M. Pierre, S. Profumo, F. Queiroz, Eur. Phys. J. C 78(3), 203 (2018). https://doi.org/10.1140/epjc/s10052-018-5662-y

    Article  ADS  Google Scholar 

  2. J. Feng et al., in Community Summer Study 2013: Snowmass on the Mississippi (2014)

  3. J. Hewett et al., in Community Summer Study 2013: Snowmass on the Mississippi (2014)

  4. J. Alexander et al., in Dark Sectors 2016 Workshop: Community Report (2016)

  5. M. Battaglieri et al., in U.S. Cosmic Visions: New Ideas in Dark Matter (2017)

  6. J. Beacham et al., J. Phys. G 47(1), 010501 (2020). https://doi.org/10.1088/1361-6471/ab4cd2

    Article  ADS  Google Scholar 

  7. P. Agrawal et al., in Feebly-Interacting Particles: FIPs 2020 Workshop Report (2021)

  8. T. Blum, A. Denig, I. Logashenko, E. de Rafael, B. Roberts, T. Teubner, G. Venanzoni, The muon (g-2) theory value: present and future (2013)

  9. R. Pohl et al., Nature 466, 213 (2010). https://doi.org/10.1038/nature09250

    Article  ADS  Google Scholar 

  10. C. Carlson, Prog. Part. Nucl. Phys. 82, 59 (2015). https://doi.org/10.1016/j.ppnp.2015.01.002

    Article  ADS  Google Scholar 

  11. J. Krauth, et al., in 52nd Rencontres de Moriond on EW Interactions and Unified Theories (2017), pp. 95–102

  12. F. Wietfeldt, G. Greene, Rev. Mod. Phys. 83(4), 1173 (2011). https://doi.org/10.1103/RevModPhys.83.1173

    Article  ADS  Google Scholar 

  13. G. Greene, P. Geltenbort, Sci. Am. 314, 36 (2016). https://doi.org/10.1038/scientificamerican0416-36

    Article  Google Scholar 

  14. L. Sbordone, P. Bonifacio, E. Caffau, H.G. Ludwig, N.T. Behara, J.I. González Hernández, M. Steffen, R. Cayrel, B. Freytag, C. Van’t Veer, Astron. Astrophys. 522, A26 (2010). https://doi.org/10.1051/0004-6361/200913282

    Article  Google Scholar 

  15. A. Krasznahorkay et al., Phys. Rev. Lett. 116, 042501 (2016)

    Article  ADS  Google Scholar 

  16. A. Krasznahorkay et al., in New Evidence Supporting the Existence of the Hypothetic X17 Particle (2019)

  17. E. Nardi, C. Carvajal, A. Ghoshal, D. Meloni, M. Raggi, Phys. Rev. D 97(9), 095004 (2018). https://doi.org/10.1103/PhysRevD.97.095004

    Article  ADS  Google Scholar 

  18. L. Marsicano, M. Battaglieri, M. Bondi’, C.D. Carvajal, A. Celentano, M. De Napoli, R. De Vita, E. Nardi, M. Raggi, P. Valente, Phys. Rev. D 98(1), 015031 (2018). https://doi.org/10.1103/PhysRevD.98.015031

    Article  ADS  Google Scholar 

  19. L. Marsicano, M. Battaglieri, M. Bondí, C. Carvajal, A. Celentano, M. De Napoli, R. De Vita, E. Nardi, M. Raggi, P. Valente, Phys. Rev. Lett. 121(4), 041802 (2018). https://doi.org/10.1103/PhysRevLett.121.041802

    Article  ADS  Google Scholar 

  20. A. Celentano, L. Darmé, L. Marsicano, E. Nardi, Phys. Rev. D 102(7), 075026 (2020). https://doi.org/10.1103/PhysRevD.102.075026

    Article  ADS  Google Scholar 

  21. T. Slatyer, N. Padmanabhan, D. Finkbeiner, Phys. Rev. D 80, 043526 (2009). https://doi.org/10.1103/PhysRevD.80.043526

    Article  ADS  Google Scholar 

  22. T. Slatyer, Phys. Rev. D 93(2), 023527 (2016). https://doi.org/10.1103/PhysRevD.93.023527

    Article  ADS  Google Scholar 

  23. N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A.J. Banday, R.B. Barreiro, N. Bartolo et al., Astron. Astrophys. 641, A6 (2020). https://doi.org/10.1051/0004-6361/201833910

    Article  Google Scholar 

  24. A. Berlin, N. Blinov, G. Krnjaic, P. Schuster, N. Toro, Phys. Rev. D 99(7), 075001 (2019). https://doi.org/10.1103/PhysRevD.99.075001

    Article  ADS  Google Scholar 

  25. D. Tucker-Smith, N. Weiner, Phys. Rev. D 64, 043502 (2001). https://doi.org/10.1103/PhysRevD.64.043502

    Article  ADS  Google Scholar 

  26. E. Izaguirre, G. Krnjaic, B. Shuve, Phys. Rev. D 93(6), 063523 (2016). https://doi.org/10.1103/PhysRevD.93.063523

    Article  ADS  Google Scholar 

  27. K. Griest, D. Seckel, Phys. Rev. D 43, 3191 (1991). https://doi.org/10.1103/PhysRevD.43.3191

    Article  ADS  Google Scholar 

  28. E. Izaguirre, Y. Kahn, G. Krnjaic, M. Moschella, Phys. Rev. D 96(5), 055007 (2017). https://doi.org/10.1103/PhysRevD.96.055007

    Article  ADS  Google Scholar 

  29. J. Feng, J. Smolinsky, Phys. Rev. D 96(9), 095022 (2017). https://doi.org/10.1103/PhysRevD.96.095022

    Article  ADS  Google Scholar 

  30. S.M. Choi, Y.J. Kang, H. Lee, JHEP 12, 099 (2016). https://doi.org/10.1007/JHEP12(2016)099

    Article  ADS  Google Scholar 

  31. L. Darmé, S. Rao, L. Roszkowski, JHEP 03, 084 (2018). https://doi.org/10.1007/JHEP03(2018)084

    Article  ADS  Google Scholar 

  32. L. Darmé, S. Rao, L. Roszkowski, JHEP 12, 014 (2018). https://doi.org/10.1007/JHEP12(2018)014

    Article  ADS  Google Scholar 

  33. A. Celentano, J. Phys. Conf. Ser. 556(1), 012064 (2014)

    Article  Google Scholar 

  34. G. Franklin, EPJ Web Conf. 142, 01015 (2017)

    Article  Google Scholar 

  35. L. Marsicano, PoS ICHEP2018, 075 (2019). 10.22323/1.340.0075

    Google Scholar 

  36. R. Corliss, Nucl. Instrum. Methods A 865, 125 (2017). https://doi.org/10.1016/j.nima.2016.07.053

    Article  ADS  Google Scholar 

  37. M. Raggi, V. Kozhuharov, Adv. High Energy Phys. 2014, 959802 (2014). https://doi.org/10.1155/2014/959802

    Article  Google Scholar 

  38. E. Izaguirre et al., Phys. Rev. D 91, 094026 (2015)

    Article  ADS  Google Scholar 

  39. A. Pukhov, in CalcHEP 2.3: MSSM, Structure Functions, Event Generation, Batchs, and Generation of Matrix Elements for other Packages (2004)

  40. S. Agostinelli et al., Nucl. Instrum. Methods A506, 250 (2003)

    Article  ADS  Google Scholar 

  41. E. Leonardi, V. Kozhuharov, M. Raggi, P. Valente, J. Phys. Conf. Ser. 898(4), 042025 (2017). https://doi.org/10.1088/1742-6596/898/4/042025

    Article  Google Scholar 

  42. M. Raggi et al., Nucl. Instrum. Methods A 862, 31 (2017). https://doi.org/10.1016/j.nima.2017.05.007

    Article  ADS  Google Scholar 

  43. E. Leonardi, M. Raggi, P. Valente, J. Phys. Conf. Ser. 898(3), 032024 (2017). https://doi.org/10.1088/1742-6596/898/3/032024

    Article  Google Scholar 

  44. M. Tanabashi et al., Phys. Rev. D 98, 030001 (2018)

    Article  ADS  Google Scholar 

  45. A. Chilton, Health Phys. 34(6), 715 (1978)

    Google Scholar 

  46. J. Grames, E. Voitier, Private communication (2020)

  47. P. Adzic et al., JINST 5, P03010 (2010)

  48. S. Chatrchyan et al., JINST 3, S08004 (2008)

    Google Scholar 

  49. V. Dormenev et al., Nucl. Instrum. Methods A 623(3), 1082 (2010)

    Article  ADS  Google Scholar 

  50. S. Fegan et al., Nucl. Instrum. Methods A789, 101 (2015)

    Article  ADS  Google Scholar 

  51. J. Lees et al., Phys. Rev. Lett. 119(13), 131804 (2017). https://doi.org/10.1103/PhysRevLett.119.131804

    Article  ADS  Google Scholar 

  52. D. Banerjee et al., Phys. Rev. Lett. 123(12), 121801 (2019). https://doi.org/10.1103/PhysRevLett.123.121801

    Article  ADS  Google Scholar 

  53. A. Aguilar-Arevalo et al., Phys. Rev. D 98(11), 112004 (2018). https://doi.org/10.1103/PhysRevD.98.112004

    Article  ADS  Google Scholar 

  54. M. Raggi, V. Kozhuharov, P. Valente, EPJ Web Conf. 96, 01025 (2015). https://doi.org/10.1051/epjconf/20159601025

    Article  Google Scholar 

  55. J. Alexander, EPJ Web Conf. 142, 01001 (2017). https://doi.org/10.1051/epjconf/201714201001

    Article  Google Scholar 

  56. B. Wojtsekhowski et al., JINST 13(02), P02021 (2018). https://doi.org/10.1088/1748-0221/13/02/P02021

    Article  Google Scholar 

  57. W. Altmannshofer et al., PTEP 2019(12), 123C01 (2019). https://doi.org/10.1093/ptep/ptz106. (Erratum: PTEP 2020, 029201 (2020))

    Article  Google Scholar 

  58. G. Cowan et al., Eur. Phys. J. C 71, 1554 (2011). (Erratum: Eur. Phys. J. C 73, 2501 (2013))

    Article  ADS  Google Scholar 

  59. T. Åkesson et al., arXiv:1808.05219 [hep-ex]

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Marsicano or M. Raggi.

Additional information

Communicated by Nicolas Alamanos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battaglieri, M., Bianconi, A., Bisio, P. et al. Light dark matter searches with positrons. Eur. Phys. J. A 57, 253 (2021). https://doi.org/10.1140/epja/s10050-021-00524-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00524-6

Navigation