Skip to main content
Log in

Study of QCD dynamics using small systems

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The multiplicity, finite system size and collision energy dependence of heat capacity (\(C_V\)), conformal symmetry breaking measure (CSBM) and speed of sound (\(c_s\)) have been investigated using ALICE data for \(p+p\) collisions at \(\sqrt{s}\) = 7 TeV. The aim of this study is to ascertain the possibility of formation of a thermalized medium in such collisions. We find that there is a threshold in charged particle multiplicity beyond which \(C_V\), CSBM and \(c_s\) attain plateau. The presence of such threshold in multiplicity is further reflected in the variation of these quantities with center-of-mass energy (\(\sqrt{s}\)). In order to have a grasp on experimentally obtained results, variation of average transverse momentum with multiplicity has also been studied. The experimental results have been contrasted with PYTHIA8 and it is found that PYTHIA8 is inadequate to explain the features reflected in these quantities, thereby indicating the possibility of thermalization in such small system. It is also observed that the finite size effects alone cannot explain the non-extensive nature of particle spectra in \(p+p\) collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: In this work we have analyzed publicly available experimental data which can be found from the list of references. The theoretical numbers obtained by the authors for the purpose of the analysis are available from the corresponding author upon reasonable request.]

References

  1. R. Baier, P. Romatschke, U.A. Wiedemann, Phys. Rev. C 73, 064903 (2006)

    Article  ADS  Google Scholar 

  2. B. Alver et al., PHOBOS Collaboration. Phys. Rev. C 81, 034915 (2010)

    Article  ADS  Google Scholar 

  3. B.Z. Kopeliovich, I.K. Potashnikova, I. Schmidt, Nucl. Phys. A 864, 203 (2011)

    Article  ADS  Google Scholar 

  4. G. Agakishiev et al., STAR Collaboration. Phys. Rev. Lett. 108, 072301 (2012)

    Article  ADS  Google Scholar 

  5. T. Isobe, PHENIX Collaboration. arXiv:nuclex/0605016

  6. V. Khachatryan et al., CMS Collaboration. J. High Energy Phys. 09, 091 (2010)

    Article  ADS  Google Scholar 

  7. W. Li, Mod. Phys. Lett. A 27, 1230018 (2012)

    Article  ADS  Google Scholar 

  8. V. Khachatryan et al., CMS Collaboration. Phys. Rev. Lett. 116, 172302 (2016)

    Article  ADS  Google Scholar 

  9. G. Aad et al., ATLAS Collaboration. Phys. Rev. Lett. 116, 172301 (2016)

    Article  ADS  Google Scholar 

  10. V. Khachatryan et al., CMS Collaboration. Phys. Lett. B 765, 193 (2017)

    Article  ADS  Google Scholar 

  11. W. Zhao, Y. Zhou, H. Xu, W. Deng, H. Song, Phys. Lett. B 780, 495 (2018)

    Article  ADS  Google Scholar 

  12. M. Mace, V.V. Skokov, P. Tribedy, R. Venugopalan, Phys. Rev. Lett. 121, 052301 (2018)

    Article  ADS  Google Scholar 

  13. M.A. Braun, J. Dias de Deus, A.S. Hirsch, C. Pajares, R.P. Scharenberg, B.K. Srivastava, Phys. Rept. 599, 1 (2015)

    Article  ADS  Google Scholar 

  14. L.D. Landau, Izv. Akad. Nauk. SSSR 17, 51 (1953)

    Google Scholar 

  15. S. Belenkij, L.D. Landau, Usp. Fiz. Nauk. 56, 309 (1955)

    Article  Google Scholar 

  16. S. Belenkij, L.D. Landau, Nuovo Cimento Suppl. 3, 15 (1956)

    Article  Google Scholar 

  17. D. ter Haar (Ed.), Collected papers of L.D. Landau, Gordon & Breach, New York, (1965), p. 665

  18. L. Van Hove, Phys. Lett. 118B, 138 (1982)

    Article  ADS  Google Scholar 

  19. R.P. Scharenberg, B.K. Srivastava, C. Pajares, Phys. Rev. D 100, 114040 (2019)

    Article  ADS  Google Scholar 

  20. S. Borsanyi et al., JHEP 11, 077 (2010)

    Article  ADS  Google Scholar 

  21. S. Borsanyi et al., J. Phys. Conf. Ser. 316, 012020 (2011)

    Article  Google Scholar 

  22. D. Thakur, ALICE Collaboration. PoS HardProbes2018, 164 (2019)

  23. D. Adamová et al., ALICE Collaboration. Phys. Lett. B 776, 91 (2018)

    Article  ADS  Google Scholar 

  24. B. Abelev et al., ALICE Collaboration. Phys. Lett. B 727, 371 (2013)

    Article  ADS  Google Scholar 

  25. J. Adams et al., Nature Physics 13, 535 (2017)

    Article  ADS  Google Scholar 

  26. S. Basu, S. Chatterjee, R. Chatterjee, T.K. Nayak, B.K. Nandi, Phys. Rev. C 94, 044901 (2016)

    Article  ADS  Google Scholar 

  27. X.M. Li, S.Y. Hu, J. Feng, S.P. Li, B.H. Sa, D.M. Zhou, Int. J. Mod. Phys. E 16, 1906 (2007)

    Article  ADS  Google Scholar 

  28. F. Reif, Fundamentals of Statistical and Thermal Physics (Mcgraw-Hill International Editions, Singapore, 1985)

    Google Scholar 

  29. E.W. Kolb, M.S. Turner, The Early Universe (Addison-Wesley Publishing Co., Singapore, 1989)

    Google Scholar 

  30. J. Cleymans, A.I.P. Conf, Proc. 1625, 31 (2015)

    Google Scholar 

  31. C. Tsallis, J. Statist. Phys. 52, 479 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  32. C. Tsallis, Eur. Phys. J. A 40, 257 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  33. C. Tsallis, Introduction to Nonextensive Statistical Mechanics (Springer, Berlin, 2009)

    MATH  Google Scholar 

  34. G. Wilk, Z. Włodarczyk, Phys. Rev. Lett. 84, 2770 (2000)

    Article  ADS  Google Scholar 

  35. G. Wilk, Z. Włodarczyk, Phys. Rev. C 79, 054903 (2009)

    Article  ADS  Google Scholar 

  36. G. Wilk, Z. Włodarczyk, Chaos Solitons Fractals 13, 581 (2001)

    Article  ADS  Google Scholar 

  37. J. Cleymans, D. Worku, Eur. Phys. J. A 48, 160 (2012)

    Article  ADS  Google Scholar 

  38. S.K. Tiwari, S. Tripathy, R. Sahoo, N. Kakati, Eur. Phys. J. C 78, 938 (2018)

    Article  ADS  Google Scholar 

  39. T. Sjostrand, S. Mrenna, P.Z. Skands, JHEP 0605, 026 (2006)

    Article  ADS  Google Scholar 

  40. PYTHIA8 online manual. http://home.thep.lu.se/~torbjorn/pythia81html/Welcome.html

  41. A. Ortiz Velasquez, P. Christiansen, E. Cuautle Flores, I. Maldonado Cervantes, G. Paić, Phys. Rev. Lett. 111, 042001 (2013)

  42. R. Corke, T. Sjostrand, JHEP 1103, 032 (2011)

    Article  ADS  Google Scholar 

  43. G. Aad et al., ATLAS Collaboration. New J. Phys. 13, 053033 (2011)

    Article  Google Scholar 

  44. B. C. Li, Z. Zhang, J. H. Kang, G. X. Zhang, F. H. Liu, Adv. High Energy Phys. 2015, 741816 (2015)

  45. D. Thakur, S. Tripathy, P. Garg, R. Sahoo, J. Cleymans, Adv. High Energy Phys. 2016, 4149352 (2016)

    Article  Google Scholar 

  46. A. Khuntia, H. Sharma, S. Kumar Tiwari, R. Sahoo, J. Cleymans, Eur. Phys. J. A 55, 3 (2019)

  47. S. Acharya et al., ALICE Collaboration. Phys. Rev. C 99, 024906 (2019)

  48. G. Sarwar, S. Chatterjee, J. Alam, J. Phys. G 44, 055101 (2017)

    Article  ADS  Google Scholar 

  49. L. Marques, J. Cleymans, A. Deppman, Phys. Rev. D 91, 054025 (2015)

    Article  ADS  Google Scholar 

  50. J. Cleymans, EPJ Web Conf. 70, 00009 (2014)

    Article  Google Scholar 

  51. A. Bhattacharyya, R. Ray, S. Samanta, S. Sur, Phys. Rev. C 91, 041901 (2015)

    Article  ADS  Google Scholar 

  52. K. Aamodt et al., ALICE Collaboration. Phys. Lett. B 696, 328 (2011)

    Article  Google Scholar 

  53. B.B. Abelev et al., ALICE Collaboration. Phys. Lett. B 739, 139 (2014)

    Article  ADS  Google Scholar 

  54. J. Adam et al., ALICE Collaboration. Eur. Phys. J. C 76, 245 (2016)

    Article  ADS  Google Scholar 

  55. K. Saraswat, P. Shukla, V. Singh, J. Phys. Comm. 2, 035003 (2018)

    Article  ADS  Google Scholar 

  56. A. Alkin, Ukr. J. Phys. 62, 743 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

SD, GS and RNS acknowledge the financial supports from ALICE Project No. SR/MF/PS-01/2014-IITI(G) of Department of Science & Technology, Government of India. Further, R.S. acknowledges the financial supports from DAE-BRNS Project No. 58/14/29/2019-BRNS. JA is grateful to Tramabak Bhattacharyya for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghunath Sahoo.

Additional information

Communicated by Tamas Biro.

Raghunath Sahoo is Presently CERN Scientific Associate, CERN, Geneva, Switzerland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deb, S., Sarwar, G., Sahoo, R. et al. Study of QCD dynamics using small systems. Eur. Phys. J. A 57, 195 (2021). https://doi.org/10.1140/epja/s10050-021-00496-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00496-7

Navigation