Skip to main content
Log in

Photoneutron cross-sections for the reactions \(^{181}\mathrm{Ta}(\gamma ,\textit{x}n; \textit{x} = 1\)\(8)^{181-\textit{x}}\mathrm{Ta}\) AT \(\hbox { {E}}_\gamma {_\mathrm{max}}=\) 80–95 MeV

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The flux-averaged cross-sections \(\langle {\sigma (E_{\gamma \mathrm{max}})}\rangle \) for the \(^{181}\mathrm{Ta}(\gamma ,\textit{x}n; \textit{x} = 1\)\(8)^{181-\textit{x}}\mathrm{Ta}\) reactions have been measured at the end-point bremsstrahlung energies of 80–95 MeV. The experiments were performed by using the beam from the NSC KIPT electron linear accelerator LUE-40 and measuring the residual \(\gamma \)-ray activities of the reaction products. The theoretical \(\langle {\sigma (E_{\gamma \mathrm{max}})}\rangle \) values were computed using the mono-energetic cross-sections \(\sigma (E)\) from TALYS1.9 code. A comparison between the measured average cross-sections and the theoretical values show good agreement for the \((\gamma ,1\)\(6\mathrm{n})\) reactions but substantial differences for the \((\gamma ,7\mathrm{n})\) and \((\gamma ,8\mathrm{n})\) reactions. Isomeric average cross-section ratios \(d(E_{\gamma \mathrm{max}})\) of a product \(^{178g,m}\mathrm{Ta}\) produced from the \(^{181}\mathrm{Ta}(\gamma ,3\mathrm{n})\) reaction have been obtained. The results have been compared with the literature data and the theoretical values based on TALYS1.9 code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data will be deposited in future.]

References

  1. A.V. Varlamov, V.V. Varlamov, D.S. Rudenko, M.E. Stepanov, Atlas of Giant Dipole Resonances. Parameters and Graphs of Photonuclear Reaction Cross Sections. INDC(NDS)-394, IAEA NDS, Vienna, Austria, 1999

  2. T. Kawano, Y.S. Cho, P. Dimitriou et al., Nucl. Data Sheets 163, 109 (2020)

    Article  ADS  Google Scholar 

  3. B.S. Ishkhanov, V.N. Orlin, SYu. Troschiev, Phys. At. Nucl. 75, 253 (2012)

    Article  Google Scholar 

  4. B.S. Ishkhanov, V.N. Orlin, Phys. At. Nucl. 72, 410 (2009)

    Article  Google Scholar 

  5. O.M. Vodin, O.A. Bezshyyko, L.O. Golinka-Bezshyyko et al., Probl. Atom. Sci. Tech. 3, 38 (2019)

    Google Scholar 

  6. O.A. Bezshyyko, O.M. Vodin, L.O. Golinka-Bezshyyko et al., Probl. Atom. Sci. Tech. 6, 144 (2019)

    Google Scholar 

  7. Data Center of Photonuclear Experiments, http://cdfe.sinp.msu.ru/cgi-bin/muh/radcard.cgi?z=73&a=181&td=123456

  8. G.M. Gurevich, L.E. Lazareva, V.M. Mazur et al., Nucl. Phys. A 351, 257 (1981). https://doi.org/10.1016/0375-9474(81)90443-7

    Article  ADS  Google Scholar 

  9. H. Utsunomiya, H. Akimune, S. Goko et al., Phys. Rev. C 67, 015807 (2003). https://doi.org/10.1103/physrevc.67.015807

    Article  ADS  Google Scholar 

  10. R.L. Bramblett, J.T. Caldwell, G.F. Auchampaugh, S.C. Fultz, Phys. Rev. 129, 2723 (1963). https://doi.org/10.1103/PhysRev.129.2723

    Article  ADS  Google Scholar 

  11. R. Bergere, H. Beil, A. Veyssiere, Nucl. Phys. A 121, 463 (1968). https://doi.org/10.1016/0375-9474(68)90433-8

    Article  ADS  Google Scholar 

  12. E.G. Fuller, M.S. Weiss, Phys. Rev. 112, 560 (1958). https://doi.org/10.1103/PhysRev.112.560

    Article  ADS  Google Scholar 

  13. O.V. Bogdankevich, B.I. Goryachev, V.A. Zapevalov, Sov. Phys. JETP 42, 1502 (1962)

    Google Scholar 

  14. G.P. Antropov, I.E. Mitrofanov, B.S. Russkikh, Bull. Acad. Sci. USSR. Phys. 31, 336 (1967)

    Google Scholar 

  15. B.S. Ishkhanov, I.M. Kapitonov, E.V. Lazutin et al., JETP Lett. 54, 80 (1969)

    Google Scholar 

  16. S.N. Belyaev, V.P. Sinichkin, In Proceedings of the 8th International Meeting on Beam Dynamics and Optimization (Saratov University Publication, Saratov, 2002), p. 81

  17. V.V. Varlamov, M.E. Stepanov, V.V. Chesnokov, Bull. Acad. Sci. Phys. 67, 656 (2003)

    Google Scholar 

  18. V. Zheltonozhsky, M. Zheltonozhskaya, A. Savrasov, A. Chernyaev, Book of Abstracts LXX International Conference on NUCLEUS 2020 online part, 12–17 October 2020, Saint Petersburg, p. 64

  19. A.J. Koning, S. Hilaire, M.C. Duijvestijn, in Proceedings of the International Conference on Nuclear Data for Science and Technology, Nice, France, Apr. 22–27, 2007, Ed. by O. Bersillon, F. Gunsing, E. Bauge, et al. (EDP Sciences, 2008), p. 211

  20. M. Herman, R.Capote, B.V. Carlson, P. Oblozinsky, M. Sin, A.Trkov, H. Wienke, V. Zerkin, Nucl. Data Sheets 108, 2655–2715 (2007). https://www--nds.iaea.org/empire/

  21. B.S. Ishkhanov, V.N. Orlin, Phys. At. Nucl. 74, 21 (2012)

  22. N. Otuka, E. Dupont, V. Semkova, B.Pritychenko, at el, Towards a More Completeand Accurate Experimental Nuclear Reaction Data Library (EXFOR): International Collaboration Between Nuclear Reaction Data Centres (NRDC), Nuclear Data Sheets 120, 272–276 (2014). https://doi.org/10.1016/j.nds.2014.07.065

  23. J.H. Carver, W. Turchinetz, Research School of Physical Sciences (Australian National University, Canberra, 1957)

    Google Scholar 

  24. H. Bartsch, K. Huber, U. Kneissl, H. Krieger, Nucl. Phys. A 256, 243 (1976)

    Article  ADS  Google Scholar 

  25. A.N. Vodin, O.S. Deiev, I.S. Timchenko et al., Probl. Atom. Sci. Tech. 3, 148 (2020)

    Article  Google Scholar 

  26. H. Naik, G.N. Kim, R. Schwengner et al., Nucl. Phys. A 916, 168 (2013). https://doi.org/10.1016/j.nuclphysa.2013.08.003

    Article  ADS  Google Scholar 

  27. V. Napoli, A.M. Lacerenza, F. Salvetti et al., Lett. Nuovo Cimento 1, 835 (1971)

    Article  Google Scholar 

  28. A.N. Vodin, O.S. Deiev, I.S. Timchenko, S.N. Olejnik. arXiv:2012.14475, will be published in EPJA

  29. A.N. Dovbnya, M.I. Aizatsky, V.N. Boriskin et al., Probl. Atom. Sci. Tech. 2, 11 (2006)

    Google Scholar 

  30. M.I. Aizatsky, V.I. Beloglasov, V.N. Boriskin et al., Probl. Atom. Sci. Tech. 3, 60 (2014)

    Google Scholar 

  31. A.N. Vodin, O.S. Deiev, V.Yu. Korda, et al., Nucl. Phys. A 1014, 122248 (2021). arXiv:2101.08614

  32. S. Agostinelli, J. Allison, K. Amako, J.Apostolakis, et. al, Geant4 – a simulationtoolkit. Nucl. Instrum. Methods Phys. Res., A 506, 250–303. https://doi.org/10.1016/S0168-9002(03)01368-8

  33. S.Y.F. Chu, L.P. Ekstrom, R.B. Firestone, The Lund/LBNL, Nuclear Data Search, Version 2.0, February 1999, WWW Table of Radioactive Isotopes, http://nucleardata.nuclear.lu.se/toi/

  34. A. Koning, D. Rochman, Nucl. Data Sheets 113 2841 (2012), TALYS – based evaluated nuclear data library, https://tendl.web.psi.ch/tendl 2019/tendl2019.html. Accessed Feb 2021

  35. O.M. Vodin, O.S. Deiev, S.M. Olejnik, Probl. Atom. Sci. Tech. 6, 122 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the staff of the linear electron accelerator LUE-40 NSC KIPT, Kharkiv, Ukraine, for their cooperation in the realization of the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Timchenko.

Additional information

Communicated by Navin Alahar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vodin, A.N., Deiev, O.S., Timchenko, I.S. et al. Photoneutron cross-sections for the reactions \(^{181}\mathrm{Ta}(\gamma ,\textit{x}n; \textit{x} = 1\)\(8)^{181-\textit{x}}\mathrm{Ta}\) AT \(\hbox { {E}}_\gamma {_\mathrm{max}}=\) 80–95 MeV. Eur. Phys. J. A 57, 208 (2021). https://doi.org/10.1140/epja/s10050-021-00484-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00484-x

Navigation