Skip to main content
Log in

\(^{10}\)B(n,\(\alpha _{0}\))\(^{7}\)Li and \(^{10}\)B(n,\(\alpha _{1}\))\(^{7}\)Li reactions measured via Trojan Horse Method

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The neutron capture reaction \(^{10}\)B(n,\(\alpha \))\(^{7}\)Li has been investigated via the Trojan Horse Method from 0 to 1 MeV. The \(\alpha _{0}\) and \(\alpha _{1}\) channels, corresponding to \(^{7}\)Li in its g.s. and 1st excited level respectively, have been analyzed and cross sections have been measured for the two reaction channels. Angular distributions for the \(^{11}\)B energy levels in the explored range have been extracted and compared with literature, while the J\(^{\pi }\) of the level at \(E_{11B}=11.450\) MeV (4 keV before the \(\alpha \) emission threshold) has been clearly determined for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statement

The manuscript has associated data in a data repository. [Author’s comment: The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.]

References

  1. S. Amaducci et al., Eur. Phys. J. A 55(7), 120 (2019)

    Article  ADS  Google Scholar 

  2. R.F. Barth et al., Cancer 70, 12 (1992)

    Google Scholar 

  3. J.C. Yanch et al., Med. Phys. 26, 364 (1999)

    Article  Google Scholar 

  4. N. Vulpis, Mutat. Res., Fundam. Mol. Mech. Mutagen. 18, 1 (1973)

    Article  Google Scholar 

  5. C. Rangacharyulu, Physics of Nuclear Radiations: Concepts, Techniques and Applications (CRC Press, Boca Raton 2014)

  6. R.L. Macklin, J.H. Gibbons, Phys. Rev. 165(4), 1147–1153 (1968)

    Article  ADS  Google Scholar 

  7. E.G. Bilpuch et al., Ann. Phys. 10(4), 455–476 (1960)

    Article  ADS  Google Scholar 

  8. D. Bogart, L.L. Nichols, Nucl. Phys. A 125(2), 463–476 (1969)

    Article  ADS  Google Scholar 

  9. S.A. Cox, F.R. Pontet, J. Nucl. Eng. 21(3), 271–283 (1967)

    Article  Google Scholar 

  10. F.P. Mooring et al., Nucl. Phys. 82(1), 16–32 (1966)

    Article  Google Scholar 

  11. S.J. Friesenhahn et al. Natl. Bur. Stands. (US) Spec. Publ. 1 (1975)

  12. Hans Bichsel, T.W. Bonner, J. Phys. Rev. 108, 1025 (1957)

    Article  ADS  Google Scholar 

  13. M.D. Olson, R.W. Kavanagh, Phys. Phys. C 30, 1375 (1984)

    ADS  Google Scholar 

  14. R.M. Sealock, J.C. Overley, Phys. Rev. C 13(6), 2149–2158 (1976)

    Article  ADS  Google Scholar 

  15. R.A. Schrack et al., Nucl. Sci. Eng. 68(2), 189–196 (1978)

    Article  Google Scholar 

  16. W.M. Toney, A.W. Waltner, Nucl. Phys. 80, 237 (1966)

    Article  Google Scholar 

  17. R.G. Pizzone et al., Astrophys. J. 786(2), 112 (2014)

    Article  ADS  Google Scholar 

  18. G. DÁgata et al. Astrophys. J. 860(1) (2018)

  19. A. Tumino et al., Nature 557(7707), 687–690 (2018)

    Article  ADS  Google Scholar 

  20. M. La Cognata et al., Astrophys. J. 846(1), 65 (2017)

    Article  ADS  Google Scholar 

  21. S. Cherubini et al., Phys. Rev. C 92, 015805 (2015)

    Article  ADS  Google Scholar 

  22. R.G. Pizzone et al., Eur. Phys. J. A 836, 57 (2016)

    Google Scholar 

  23. M. Gulino et al., J. Phys. G 37(12), 125105 (2010)

    Article  ADS  Google Scholar 

  24. M. Gulino et al., Phys. Rev. C 87(R), 012801 (2013)

    Article  ADS  Google Scholar 

  25. G.L. Guardo et al., Phys. Rev. C 95, 025807 (2017)

    Article  ADS  Google Scholar 

  26. R.G. Pizzone et al., Eur. Phys. J. A 56(8), 1–7 (2020)

    Article  Google Scholar 

  27. L. Lamia et al. Nuovo Cimento 31 C(4) (2008)

  28. G.L. Guardo et al., Eur. Phys. J. A 55(11), 211 (2019)

    Article  ADS  Google Scholar 

  29. C. Spitaleri et al., Phys. Rev. C 95, 035801 (2017)

    Article  ADS  Google Scholar 

  30. G. Baur, Phys. Lett. 178, 135 (1986)

    Article  Google Scholar 

  31. G.R. Satchler, Direct Nuclear Reactions, International Series of Monographs on Physics (Oxford University Press, Oxford, 1983)

    Google Scholar 

  32. C. Spitaleri et al., Eur. Phys. J. A 52(4), 77 (2016)

    Article  ADS  Google Scholar 

  33. R.E. Tribble et al., Rep. Progr. Phys. 77, 106901 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  34. C. Spitaleri et al. Eur. Phys. J. A 55 (2019)

  35. L. Lamia et al., Astrophys. J. 879, 23 (2019)

    Article  ADS  Google Scholar 

  36. M. Gulino, S. Cherubini, S. Kubono, L. Lamia, M. La Cognata, R.G. Pizzone, H. Yamaguchi, S. Hayakawa, Y. Wakabayashi, N. Iwasa et al., J. Phys. Conf. Ser. 1610, 012005 (2020). IOP Publishing

    Article  Google Scholar 

  37. I.S. Shapiro et al., Nucl. Phys. A 61, 353 (1965)

    Article  Google Scholar 

  38. C. Spitaleri, Proceedings of the 5th Winter School on Hadronic Physics (World Scientific, Singapore, 1990)

    Google Scholar 

  39. C. Spitaleri et al., Phys. Atomic Nuclei 74(12), 1725 (2011)

    Article  ADS  Google Scholar 

  40. C. Spitaleri. Proc. of the International School of Physics Enrico Fermi, Course CLXXVIII (2011)

  41. R.G. Pizzone et al., Phys. Rev. C 80, 025807 (2009)

    Article  ADS  Google Scholar 

  42. R.G. Pizzone et al., Eur. Phys. J. A 56(11), 1–11 (2020)

    Article  Google Scholar 

  43. C. Spitaleri et al., Phys. Rev. C 90, 035801 (2014)

    Article  ADS  Google Scholar 

  44. P.G. Roos et al., Phys. Rev. 15, 69 (1977)

    Google Scholar 

  45. J.M. Blatt, L.C. Biedenharn, Rev. Mod. Phys. 24(4), 258 (1952)

    Article  ADS  Google Scholar 

  46. J.H. Kelley et al., Nucl. Phys. A 880, 88 (2012)

    Article  ADS  Google Scholar 

  47. F.J. Hambsch, I. Ruskov, Nucl. Sci. Eng. 163(1), 1–16 (2009)

    Article  Google Scholar 

  48. A. Cvetinović et al., Phys. Rev. C 97, 6 (2018)

    Article  Google Scholar 

  49. G.G. Rapisarda et al., Eur. Phys. J. A 54, 11 (2018)

    Article  Google Scholar 

  50. M. La Cognata et al., Astrophys. J. 723(2), 1512–1522 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Italian Ministry of the University under Grant no. RBFR082838 and “LNS AstroFisica Nucleare (fondi premiali)” and under PON R&I 2014–2020—AIM (Attraction and International Mobility), project AIM1848704-3. The authors acknowledge “Programma ricerca di ateneo UNICT 2020-22 linea2” and “Starting grant 2020” of University of Catania, the LNS accelerator divisions staff and the LNS target laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Spartà.

Additional information

Communicated by Alexandre Obertelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spartà, R., Lamia, L., La Cognata, M. et al. \(^{10}\)B(n,\(\alpha _{0}\))\(^{7}\)Li and \(^{10}\)B(n,\(\alpha _{1}\))\(^{7}\)Li reactions measured via Trojan Horse Method. Eur. Phys. J. A 57, 170 (2021). https://doi.org/10.1140/epja/s10050-021-00481-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00481-0

Navigation