Skip to main content
Log in

Neutron capture on \(^{16}\)O within the framework of RMF + ACCC + BCS for astrophysical simulations

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Neutron capture on \(^{16}\)O may serve as a neutron poison in certain nucleosynthesis scenarios. We revisit this reaction at energy ranges of astrophysical interest, employing a novel theoretical approach that self-consistently treats capture through bound and resonant levels. Our covariant density functional theory is based on a relativistic mean field (RMF) theory with contributions from resonant orbitals included via the analytical continuation of the coupling constant (ACCC), and pairing correlations included via the resonant Bardeen–Cooper–Schrieffer (BCS) technique. We employ this RMF + ACCC + BCS approach to extract bound states, resonant states, and pairing correlations in \(^{17}\)O in a self-consistent microscopic way. We calculate \(^{16}\)O(n,\(\gamma \))\(^{17}\)O direct capture cross sections resulting from neutron E1 transitions from scattering states to bound states, resonant cross sections from a Breit–Wigner formalism, and Maxwellian-averaged cross sections and thermonuclear reaction rates for astrophysical applications. We use different effective interactions to determine the viability of our approach to determine the \(^{17}\)O level structure and corresponding reaction rates. Comparisons to measurements and database values are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

References

  1. F. Käppeler, R. Gallino, S. Bisterzo, W. Aoki, Rev. Mod. Phys. 83, 157 (2011)

    Article  ADS  Google Scholar 

  2. T. Kajino, G.J. Mathews, Rep. Prog. Phys. 80, 084901 (2017)

    Article  ADS  Google Scholar 

  3. M. Busso, R. Gallino, Astron. Astrophy. 151, 205 (1985)

    ADS  Google Scholar 

  4. P. Mohr, C. Heinz, M. Pignatari et al., Astrophys. J. 827, 29 (2016)

    Article  ADS  Google Scholar 

  5. A. Koloczek, B. Thomas, J. Glorius et al., At. Data Nucl. Data Tables 108, 1 (2016)

    Article  ADS  Google Scholar 

  6. B.J. Allen, J.H. Gibbons, R.L. Macklin, Adv. Nucl. Phys. 4, 205 (1971)

    Article  Google Scholar 

  7. B.J. Allen, R.L. Macklin, Phys. Rev. C 3, 1737 (1971)

    Article  ADS  Google Scholar 

  8. H. Kitazawa, M. Igashira, J. Phys. G Suppl. 14, S215 (1988)

    Article  ADS  Google Scholar 

  9. Y. Nagai, M. Igashira, T. Shima et al., AIP Conf. Proc. 327, 201 (1995)

    Article  ADS  Google Scholar 

  10. M. Igashira, Y. Nagai, K. Masuda, T. Ohsaki, Astrophys. J. Lett. 441, L89 (1995)

    Article  ADS  Google Scholar 

  11. Y. Nagai, private communication (2000)

  12. Y. Nagai, T. Shima, T.S. Suzuki et al., Hyperf. Interact. 103, 43 (1996)

    Article  ADS  Google Scholar 

  13. M. Igashira, H. Kitazawa, K. Takaura, Nucl. Phys. A 536, 285 (1992)

    Article  ADS  Google Scholar 

  14. T. Ohsaki, Y. Nagai, M. Igashira et al., AIP Conf. Proc. 529, 458 (2000)

    Article  ADS  Google Scholar 

  15. A. Mengoni, K. Shibata, J. Kopecky, INDC(NDS)-412, 1 (1999)

  16. D.A. Brown et al., Nucl. Data Sheets 148, 1 (2018)

    Article  ADS  Google Scholar 

  17. https://www.nndc.bnl.gov/ensdf/

  18. A. Likar, T. Vidmar, Nucl. Phys. A 619, 49 (1997)

    Article  ADS  Google Scholar 

  19. S. Chiba, H. Koura, T. Hayakawa, T. Maruyama, T. Kawano, T. Kajino, Phys. Rev. C 77, 015809 (2008)

    Article  ADS  Google Scholar 

  20. M. Dufour, P. Descouvemont, Nucl. Phys. A 694, 221 (2001)

    Article  ADS  Google Scholar 

  21. M. Dufour, P. Descouvemont, Phys. Rev. C 72, 015801 (2005)

    Article  ADS  Google Scholar 

  22. S. Dubovichenko, A. Dzhazairov-Kakhramanov, N. Afanasyeva, Int. J. Mod. Phys. E 22, 1350075 (2013)

    Article  ADS  Google Scholar 

  23. S.B. Dubovichenko, Phys. Part. Nucl. 44, 803 (2013)

    Article  Google Scholar 

  24. K. Yamamoto, H. Masui, K. Kato, T. Wada, M. Ohta, AIP Conf. Proc. 1016, 227 (2008)

    Article  ADS  Google Scholar 

  25. K. Yamamoto, H. Masui, K. Kato et al., Prog. Theo. Phys. 121, 375 (2009)

    Article  ADS  Google Scholar 

  26. V. Guimaraes, C.A. Bertulani, AIP Conf. Proc. 1245, 30 (2010)

    Article  ADS  Google Scholar 

  27. J.T. Huang, C.A. Bertulani, V. Guimaraes, At. Data Nucl. Data Tables 96, 824 (2010)

    Article  ADS  Google Scholar 

  28. J.M. Sparenberg, P. Capel, D. Baye, Phys. Rev. C 81, 011601 (2010)

    Article  ADS  Google Scholar 

  29. K. Yamamoto, H. Masui, M. Ohta, K. Kato, AIP Conf. Proc. 1238, 205 (2010)

    Article  ADS  Google Scholar 

  30. C. Wang, O.I. Cisse, D. Baye, Phys. Rev. C 80, 034611 (2009)

    Article  ADS  Google Scholar 

  31. S.S. Zhang, J.P. Peng, M.S. Smith, G. Arbanas, R.L. Kozub, Phys. Rev. C 91, 045802 (2015)

    Article  ADS  Google Scholar 

  32. A. Idini, C. Barbieri, P. Navrtil, Phys. Rev. Lett. 123, 092501 (2019)

    Article  ADS  Google Scholar 

  33. Y. Xu, S. Goriely, A.J. Koning, S. Hilaire, Phys. Rev. C 90, 024604 (2014)

    Article  ADS  Google Scholar 

  34. Y. Xu, S. Goriely, Phys. Rev. C 86, 045801 (2012)

    Article  ADS  Google Scholar 

  35. S.S. Zhang, E.G. Zhao, S.G. Zhou, Eur. Phys. J. A 49, 77 (2013)

    Article  ADS  Google Scholar 

  36. S.S. Zhang, M.S. Smith, Z.S. Kang, J. Zhao, Phys. Lett. B 730, 30 (2014)

    Article  ADS  Google Scholar 

  37. P. Mohr, Phys. Rev. C 86, 068803 (2012)

    Article  ADS  Google Scholar 

  38. J.H. Kelley, D.R. Tilley, H.R. Weller, C.M. Cheves, Nucl. Phys. 564, 1 (1993)

    Article  Google Scholar 

  39. R. Holt, H. Jackson, R. Laszewski, J. Monahan, J. Specht, Phys. Rev. C 18, 1962 (1978)

    Article  ADS  Google Scholar 

  40. T. Faestermann, P. Mohr, R. Hertenberger, H.-F. Wirth, Phys. Rev. C 92, 052802 (2015)

    Article  ADS  Google Scholar 

  41. S.-K. Lee, J. Fink, A.B. Balantekin et al., Phys. Rev. Lett. 57, 2916 (1986)

    Article  ADS  Google Scholar 

  42. G.A. Lalazissis, P. Ring, Phys. Rev. C 55, 540 (1997)

    Article  ADS  Google Scholar 

  43. M. Sharma, M. Nagarajan, P. Ring, Phys. Lett. B 312, 377 (1993)

    Article  ADS  Google Scholar 

  44. Y. Sugahara, H. Toki, Nucl. Phys. A 579, 557 (1994)

    Article  ADS  Google Scholar 

  45. C.A. Bertulani, Comput. Phys. Commun. 156, 123 (2003)

    Article  ADS  Google Scholar 

  46. I. Angeli, K.P. Marinova, At. Data Nucl. Data Tables 99, 69 (2013)

    Article  ADS  Google Scholar 

  47. M. He, S.S. Zhang, M. Kusakabe, S.Z. Xu, T. Kajino, Ap. J. 899, 14 (2020)

    Article  Google Scholar 

  48. E. Litvinova, P. Ring, Phys. Rev. C 73, 044328 (2006)

    Article  ADS  Google Scholar 

  49. A. Trkov, D.A. Brown, ENDF-102 : ENDF/B Formats Manual, Tech. Rep. BNL-203218-2018-INRE, National Nuclear Data Center (215th Ed., ENDF/B-VI, ENDF/B-VII and ENDF/B-VIII Library) (2018)

  50. H. Beer, F. Voss, R.R. Winters, Ap. J. Supp. Ser. 80, 403 (1992)

    Article  ADS  Google Scholar 

  51. I. Dillmann, R. Plag, F. Käppeler, T. Rauscher, in Proc. EFNUDAT Scientific Workshop on Neutron Measurements, Theory and Applications, Geel, Belgium, ed. by F.-J. Hambsch (Publications Office of the European Union, Luxembourg, 2009), p. 55

  52. R.H. Cyburt, A.M. Amthor, R. Ferguson, Z. Meisel, K. Smith, S. Warren, A. Heger, R.D. Hoffman, T. Rauscher, A. Sakharuk, H. Schatz, F.-K. Thielemann, M. Wiescher, Ap. J. Suppl. Ser. 189, 240 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Discussions with Motohiko Kusakabe and Toshitaka Kajino are gratefully acknowledged. This work was supported partially by the National Natural Science Foundation of China under Grant No. 11375022, No. 11775014, and by the U.S. Department of Energy Office of Science, Office of Nuclear Physics, under Award Number DE-AC05-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shisheng Zhang.

Additional information

Communicated by Jerome Margueron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Xu, S., He, M. et al. Neutron capture on \(^{16}\)O within the framework of RMF + ACCC + BCS for astrophysical simulations. Eur. Phys. J. A 57, 114 (2021). https://doi.org/10.1140/epja/s10050-021-00434-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00434-7

Navigation