Skip to main content
Log in

Systematic study on \(\alpha \)-decay half-lives: a new dependency of effective sharp radius on \(\alpha \)-decay energy

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Within the framework of the proximity formalism, we present a systematic study to analyze the effects of the \(\alpha \)-decay energy through the effective sharp radius parameter on the \(\alpha \)-decay half-lives of 227 nuclei in the range \(61 \le Z \le 99\). Wentzel-Kramers-Brillouin (WKB) calculations with the proximity potential Zhang 2013 are carried out to obtain the theoretical values of the \(\alpha \)-decay half-lives. In this work, we introduce a new \(Q_{\alpha }\)-dependent (QD) form of the effective sharp radius which significantly reduces the standard deviation of estimated half-lives using the Zhang 2013 model in comparison with the corresponding experimental data in our selected mass range. We evaluate the validity of this simple formula using the Geiger-Nuttall (G-N) plots and semi-empirical formulas. The modified form of the Zhang 2013 model is also found to work well in \(\alpha \)-decay studies of superheavy nuclei (SHN) with \(Z=117-120\). Our results reveal that the calculated half-lives for the use of new proposed form of the effective sharp radius in the proximity potential can reproduce the closed-shell effects at neutron magic number \(N=126\) and \(N=184\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All calculations provided during the current study are available from the corresponding author on reasonable request.]

References

  1. Y. Oganessian, J. Phys. G: Nucl. Part. Phys. 34, R165 (2007)

    Article  ADS  Google Scholar 

  2. Y.T. Oganessian, V.K. Utyonkov, Yu.V. Lobanov, F.Sh. Abdullin et al., Phys. Rev. C 74, 044602 (2006)

  3. Yu.Tu. Oganessian, V.K. Utyonkov, Yu.V. Lobanov, F.Sh. Abdullin et al., Phys. Rev. C 76, 011601 (2007)

  4. Yu.T. Oganessian, F.Sh. Abdullin, P.D. Bailey, D.E. Benker et al., Phys. Rev. Lett. 104, 142502 (2010)

  5. P.A. Ellison, K.E. Gregorich, J.S. Berryman et al., Phys. Rev. Lett. 105, 182701 (2010)

  6. S. Hofmann, S. Heinz, R. Mann, J. Maurer et al., Eur. Phys. J. A 48, 62 (2012)

    Article  ADS  Google Scholar 

  7. Y.T. Oganessian, K.P. Rykaczewski, Phys. Today 68, 32 (2015)

    Article  Google Scholar 

  8. A. Sobiczewski, Phys. Rev. C 94, 051302(R) (2016)

    Article  ADS  Google Scholar 

  9. Y. Qian, Z. Ren, Phys. Rev. C 88, 044329 (2013)

  10. P.E. Hodgeson, E. Betak, Phys. Rep. 374, 1 (2003)

    Article  ADS  Google Scholar 

  11. D. Ni, Z. Ren, T. Dong, Y. Qian, Phys. Rev. C 87 (2013)

  12. G. Audi, O. Bersillon, J. Blachot, A.H. Wapstra, Nucl. Phys. A 729, 3 (2003)

    Article  ADS  Google Scholar 

  13. M. Ismail, A.Y. Ellithi, M.M. Botros, A. Adel, Phys. Rev. C 81, 024602 (2010)

  14. M. Ismail, A. Adel, Phys. Rev. C 86, 014616 (2012)

  15. M. Ismail, A. Adel, Phys. Rev. C 88, 054604 (2013)

  16. B. Buck, A.C. Merchant, S.M. Perez, Phys. Rev. Lett. 65, 2975 (1990)

    Article  ADS  Google Scholar 

  17. C. Xu, Z.Z. Ren, Phys. Rev. C 74, 014304 (2006)

  18. C. Xu, Z.Z. Ren, Nucl. Phys. A 760, 303 (2005)

    Article  ADS  Google Scholar 

  19. G. Royer, J. Phys. G: Nucl. Part. Phys. 26, 1149 (2000)

    Article  ADS  Google Scholar 

  20. D. Poenaru, M. Ivascu, A. Sandulescu, J. Phys. G: Nucl. Part. Phys. 5, L169 (1979)

    Article  ADS  Google Scholar 

  21. H. Zhang, W. Zuo, J. Li, G. Royer, Phys. Rev. C 74, 017304 (2006)

  22. S. Guo, X. Bao, Y. Gao, J. Li, H. Zhang, Nucl. Phys. A 934, 110 (2015)

    Article  ADS  Google Scholar 

  23. D.N. Basu, P.R. Chowdhury, C. Samanta, Phys. Rev. C 72, 051601 (2005)

  24. C. Samanta, P.R. Chowdhury, D.N. Basu, Nucl. Phys. A 789, 142 (2007)

    Article  ADS  Google Scholar 

  25. P. Mohr, Phys. Rev. C 73, 031301 (2006)

  26. V.Y. Denisov, O.I. Davidovskaya, I.Y. Sedykh, Phys. Rev. C 92, 014602 (2015)

  27. G. Royer, R.A. Gherghescu, Nucl. Phys. A 699, 479 (2002)

    Article  ADS  Google Scholar 

  28. G. Royer, K. Zbiri, C. Bonilla, Nucl. Phys. A 730, 355 (2004)

    Article  ADS  Google Scholar 

  29. J.M. Wang, H.F. Zhang, J. Q. Li, J. Phys. G: Nucl. Part. Phys. 41, 065102 (2014)

  30. J.M. Dong, H.F. Zhang, G. Royer, Phys. Rev. C 79, 054330 (2009)

  31. J. Blocki, J. Randrup, W.J. Swiatecki, C.F. Tsang, Ann. Phys. (NY) 105, 427 (1977)

    Article  ADS  Google Scholar 

  32. I. Dutt, R.K. Puri, Phys. Rev. C 81, 044615 (2010)

    Article  ADS  Google Scholar 

  33. I. Dutt, R.K. Puri, Phys. Rev. C 81, 064609 (2010)

    Article  ADS  Google Scholar 

  34. I. Dutt, R.K. Puri, Phys. Rev. C 81, 047601 (2010)

    Article  ADS  Google Scholar 

  35. Y.J. Yao, G.L. Zhang, W.W. Qu, J.Q. Qian, Eur. Phys. J. A 51, 122 (2015)

    Article  ADS  Google Scholar 

  36. K.P. Santhosha, Indu Sukumaran, Eur. Phys. J. A 53, 246 (2017)

    Article  ADS  Google Scholar 

  37. O.N. Ghodsi, A.D. Ataollah, Phys. Rev. C 93, 024612 (2016)

  38. R. Gharaei, S. Mohammadi, Eur. Phys. J. A 55, 119 (2019)

    Article  ADS  Google Scholar 

  39. A. Daei-Ataollah, O.N. Ghodsi, M. Mahdavi, Phys. Rev. C 97, 054621 (2018)

  40. S.S. Hosseini, H. Hassanabadi, D.T. Akrawy, S. Zarrinkamar, Eur. Phys. J. Plus 133, 7 (2018)

    Article  Google Scholar 

  41. S.S. Hosseini, H. Hassanabadi, S. Zarrinkama, Int. J. Mod. Phys. E 25, 1650109 (2016)

    Article  ADS  Google Scholar 

  42. R. Gharaei, V. Zanganeh, Nucl. Phys. A 952, 28 (2016)

    Article  ADS  Google Scholar 

  43. V. Zanganeh, N. Wang, Nucl. Phys. A 929, 94 (2014)

    Article  ADS  Google Scholar 

  44. C. Guet, E. Strumberger, M. Brack, Phys. Lett. B 205, 427 (1988)

    Article  ADS  Google Scholar 

  45. R.K. Puri, R.K. Gupta, J. Phys. G 18, 903 (1992)

    Article  ADS  Google Scholar 

  46. R.K. Gupta, S. Singh, R.K. Puri, A. Sandulescu, W. Greiner, W. Scheid, J. Phys. G: Nucl. Part. Phys. 18, 1533 (1992)

    Article  ADS  Google Scholar 

  47. F. Ghorbani, S.A. Alavi, V. Dehghani, Nucl. Phys. A 1002, 121947 (2020)

  48. D. Ni, Z. Ren, T. Dong, Y. Qian, Phys. Rev. C 87, 024310 (2013)

  49. G.L. Zhang, H.B. Zheng, W.W. Qu, Eur. Phys. J. A 49, 10 (2013)

  50. S. Misicu, H. Esbensen, Phys. Rev. C 75, 034606 (2007)

  51. M. Moghaddari Amiri, and O. N. Ghodsi Phys. Rev. C 102, 054602 (2020)

  52. F. Ghorbani, S. A. Alavi, V. Dehghani, Nucl. Phys. A 1006, 122111 (2021)

  53. C. Xu, Z. Ren, Nucl. Phys. A 760, 303 (2005)

    Article  ADS  Google Scholar 

  54. W. Huang, G. Audi, M. Wang, F. Kondev, S. Naimi, X. Xu, Chin. Phys. C 41, 030002 (2017)

  55. M. Wang, G. Audi, F. Kondev, W. Huang, S. Naimi, X. Xu, Chin. Phys. C 41, 030003 (2017)

  56. G. Royer, Nucl. Phys. A 848, 279 (2010)

    Article  ADS  Google Scholar 

  57. D. Akrawy, D.N. Poenaru, J. Phys. G: Nucl. Part. Phys. 44, 105105 (2017)

  58. V.Y. Denisov, A.A. Khudenko, Phys. Rev. C 79, 054614 (2009)

  59. D.T. Akrawy, H. Hassanabadi, S.S. Hosseini, K.P. Santhosh, Nucl. Phys. A 971, 130 (2018)

    Article  ADS  Google Scholar 

  60. J.M. Dong et al., Nucl. Phys. A 832, 198 (2010)

    Article  ADS  Google Scholar 

  61. Z.Y. Wang, Z.M. Niu, Q. Liu, J.Y. Guo, J. Phys. G: Nucl. Part. Phys. 42, 055112 (2015)

  62. G. Audi, F.G. Kondev, M. Wang, B. Pfeiffer, X. Sun, J. Blachot, M. MacCormick, Chin. Phys. C 36, 1157 (2012)

    Article  Google Scholar 

  63. H.C. Manjunatha, L. Seenappa, K. N. Sridhar, Eur. Phys. J. Plus 134, 477 (2019)

  64. H. Geiger, J.M. Nuttall, Philos. Mag. 22, 613 (1911)

    Article  Google Scholar 

  65. H. Geiger, Z. Phys. 8, 45 (1922)

    Article  ADS  Google Scholar 

  66. S. Hofmann, G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000)

    Article  ADS  Google Scholar 

  67. Y.T. Oganessian et al., Phys. Rev. C 87, 014302 (2013)

    Article  ADS  Google Scholar 

  68. S. Hofmann et al., Eur. Phys. J. A 32, 251 (2007)

    Article  ADS  Google Scholar 

  69. W. Loveland et al., Phys. Rev. C 66, 044617 (2002)

  70. D. Rudolph et al., Phys. Rev. Lett. 111, 112502 (2013)

  71. L. Stavsetra, K.E. Gregorich, J. Dvorak, P.A. Ellison, I. Dragojevic, M.A. Garcia, H. Nitsche, Phys. Rev. Lett. 103, 132502 (2009)

  72. Jun-Gang Deng, Hong-Fei Zhang, G. Royer, Phys. Rev. C 101, 034307 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Chong Qi for the valuable comments and discussions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gharaei.

Additional information

Communicated by Pierre Capel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharaei, R., Najjar, F.K. & Ghal-Eh, N. Systematic study on \(\alpha \)-decay half-lives: a new dependency of effective sharp radius on \(\alpha \)-decay energy. Eur. Phys. J. A 57, 104 (2021). https://doi.org/10.1140/epja/s10050-021-00419-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00419-6

Navigation