Skip to main content
Log in

Centrality dependence of electrical and Hall conductivity at RHIC and LHC energies for a conformal system

  • Regular Article – Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In this work, we study electrical conductivity and Hall conductivity in the presence of electromagnetic field using Relativistic Boltzmann Transport Equation with Relaxation Time Approximation. We evaluate these transport coefficients for a strongly interacting system consisting of nearly massless particles which is similar to Quark-Gluon Plasma and is likely to be formed in heavy-ion collision experiments. We explicitly include the effects of magnetic field in the calculation of relaxation time. The values of magnetic field are obtained for all the centrality classes of Au + Au collisions at \(\sqrt{s_\mathrm{NN}} =\) 200 GeV and Pb + Pb collisions at \(\sqrt{s_\mathrm{NN}} =\) 2.76 TeV. We consider the three lightest quark flavors and their corresponding antiparticles in this study. We estimate the temperature dependence of the electrical conductivity and Hall conductivity for different strengths of magnetic field. We observe a significant dependence of temperature on electrical and Hall conductivity in the presence of magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a phenomenological work which includes all the necessary information in the manuscript and there is no associated data to be deposited.]

References

  1. A. Bazavov et al., [HotQCD Collaboration], Phys. Rev. D 90, 094503 (2014)

  2. S. Borsanyi, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, K.K. Szabo, Phys. Lett. B 730, 99 (2014)

    Article  ADS  Google Scholar 

  3. M. Krzewicki [ALICE Collaboration], J. Phys. G 38, 124047 (2011)

  4. K. Aamodt et al., [ALICE Collaboration], Phys. Rev. Lett. 106, 032301 (2011)

  5. T. Hirano, P. Huovinen, Y. Nara, Phys. Rev. C 84, 011901 (2011)

    Article  ADS  Google Scholar 

  6. I. Arsene et al., [BRAHMS Collaboration], Nucl. Phys. A 757, 1 (2005)

  7. B.B. Back et al., Nucl. Phys. A 757, 28 (2005)

    Article  ADS  Google Scholar 

  8. J. Adams et al., [STAR Collaboration], Nucl. Phys. A 757, 102 (2005)

  9. E.V. Shuryak, Nucl. Phys. A 750, 64 (2005)

    Article  ADS  Google Scholar 

  10. M. Gyulassy, L. McLerran, Nucl. Phys. A 750, 30 (2005)

    Article  ADS  Google Scholar 

  11. B. Muller, J.L. Nagle, Ann. Rev. Nucl. Part. Sci. 56, 93 (2006)

    Article  ADS  Google Scholar 

  12. P. Kovtun, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 94, 111601 (2005)

    Article  ADS  Google Scholar 

  13. P. Romatschke, U. Romatschke, Phys. Rev. Lett. 99, 172301 (2007)

    Article  ADS  Google Scholar 

  14. U. Heinz, R. Snellings, Ann. Rev. Nucl. Part. Sci. 63, 123 (2013)

    Article  ADS  Google Scholar 

  15. C. Gale, S. Jeon, B. Schenke, Int. J. Mod. Phys. A 28, 1340011 (2013)

    Article  ADS  Google Scholar 

  16. D.A. Teaney, arXiv:0905.2433 [nucl-th]

  17. P. Romatschke, Int. J. Mod. Phys. E 19, 1 (2010)

    Article  ADS  Google Scholar 

  18. M. Luzum, P. Romatschke, Phys. Rev. C 78, 034915 (2008) Erratum: [Phys. Rev. C 79, 039903 (2009)]

  19. H. Song, U.W. Heinz, Phys. Rev. C 77, 064901 (2008)

    Article  ADS  Google Scholar 

  20. K. Dusling, D. Teaney, Phys. Rev. C 77, 034905 (2008)

    Article  ADS  Google Scholar 

  21. D. Molnar, P. Huovinen, J. Phys. G 35, 104125 (2008)

    Article  ADS  Google Scholar 

  22. P. Bozek, Phys. Rev. C 81, 034909 (2010)

    Article  ADS  Google Scholar 

  23. A.K. Chaudhuri, J. Phys. G 37, 075011 (2010)

    Article  ADS  Google Scholar 

  24. B. Schenke, S. Jeon, C. Gale, Phys. Rev. Lett. 106, 042301 (2011)

    Article  ADS  Google Scholar 

  25. V. Skokov, A.Y. Illarionov, V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009)

    Article  ADS  Google Scholar 

  26. K. Hattori, X.G. Huang, Nucl. Sci. Tech. 28, 26 (2017)

    Article  Google Scholar 

  27. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A 803, 227 (2008)

    Article  ADS  Google Scholar 

  28. K. Tuchin, Adv. High Energy Phys. 2013, 490495 (2013)

    Article  MathSciNet  Google Scholar 

  29. D.E. Kharzeev, K. Landsteiner, A. Schmitt, H.U. Yee, Lect. Notes Phys. 871, 1 (2013)

    Article  ADS  Google Scholar 

  30. H.T. Ding, A. Francis, O. Kaczmarek, F. Karsch, E. Laermann, W. Soeldner, Phys. Rev. D 83, 034504 (2011)

    Article  ADS  Google Scholar 

  31. G.D. Moore, J.M. Robert, arXiv:hep-ph/0607172 [hep-ph]

  32. B. Feng, Phys. Rev. D 96, 036009 (2017)

    Article  ADS  Google Scholar 

  33. A. Das, H. Mishra, R.K. Mohapatra, Phys. Rev. D 99, 094031 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  34. A. Das, H. Mishra, R.K. Mohapatra, Phys. Rev. D 101, 034027 (2020)

    Article  ADS  Google Scholar 

  35. A. Hosoya, K. Kajantie, Nucl. Phys. B 250, 666 (1985)

    Article  ADS  Google Scholar 

  36. A. Wiranata, M. Prakash, Phys. Rev. C 85, 054908 (2012)

    Article  ADS  Google Scholar 

  37. S. Plumari, A. Puglisi, F. Scardina, V. Greco, Phys. Rev. C 86, 054902 (2012)

    Article  ADS  Google Scholar 

  38. K. Hattori, S. Li, D. Satow, H.U. Yee, Phys. Rev. D 95, 076008 (2017)

    Article  ADS  Google Scholar 

  39. M. Kurian, V. Chandra, Phys. Rev. D 97, 116008 (2018)

    Article  ADS  Google Scholar 

  40. K. Hattori, X.G. Huang, D.H. Rischke, D. Satow, Phys. Rev. D 96, 094009 (2017)

    Article  Google Scholar 

  41. K. Fukushima, Y. Hidaka, Phys. Rev. Lett. 120, 162301 (2018)

    Article  ADS  Google Scholar 

  42. M. Cheng et al., Phys. Rev. D 77, 014511 (2008)

    Article  ADS  Google Scholar 

  43. V. Chandra, Phys. Rev. D 86, 114008 (2012)

    Article  ADS  Google Scholar 

  44. S. Mitra, V. Chandra, Phys. Rev. D 97, 034032 (2018)

    Article  ADS  Google Scholar 

  45. M. Kurian, V. Chandra, Phys. Rev. D 99, 116018 (2019)

    Article  ADS  Google Scholar 

  46. M. Kurian, S. Mitra, S. Ghosh, V. Chandra, Eur. Phys. J. C 79, 134 (2019)

    Article  ADS  Google Scholar 

  47. S. Rath, B.K. Patra, J. High Energy Phys. 1712, 098 (2017)

    Article  ADS  Google Scholar 

  48. J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys. Rev. C 73, 034905 (2006)

    Article  ADS  Google Scholar 

  49. C. Loizides, J. Kamin, D. d’Enterria, Phys. Rev. C 97, 054910 (2018) Erratum: [Phys. Rev. C 99, 019901 (2019)]

  50. W. Cassing, O. Linnyk, T. Steinert, V. Ozvenchuk, Phys. Rev. Lett. 110, 182301 (2013)

    Article  ADS  Google Scholar 

  51. S. Gupta, Phys. Lett. B 597, 57 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial supports from ALICE Project No. SR/MF/PS-01/2014-IITI(G) of Department of Science & Technology, Government of India. RR acknowledge the financial support by DST-INSPIRE program of Government of India. Authors also thank Dr. Arvind Khuntia for useful discussions on numerical computation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghunath Sahoo.

Additional information

Communicated by Giorgio Torrieri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, B., Rath, R., Sarwar, G. et al. Centrality dependence of electrical and Hall conductivity at RHIC and LHC energies for a conformal system. Eur. Phys. J. A 57, 45 (2021). https://doi.org/10.1140/epja/s10050-021-00348-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00348-4

Navigation