Skip to main content
Log in

Cluster transfer reactions with the combined R-matrix and Lagrange-mesh methods

A tribute to Mahir Hussein

  • Regular Article – Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We have recently applied the R-matrix method to transfer reactions in the distorted wave Born approximation (DWBA) framework. In our approach the wave function in the internal region is expanded in terms of Lagrange basis, which provides a fast and efficient way to compute the matrix elements. This paper is a short review of our work on transfer reactions. I discuss applications of our approach by considering the \(^{16}\)O(dn)\(^{17}\)F and \(^{12}\)C(\(^7\)Li, t)\(^{16}\)O reactions, which are specific examples of neutron and \(\alpha \) transfer, respectively. In particular, I discuss the role of the remnant terms, post-prior form equivalence, peripherality of the reaction and sensitivity of the transfer cross sections to the bound state wave functions. Effects of the remnant terms and of the supersymmetric bound state potentials on the extracted spectroscopic factors are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a purely theoretical paper and results of all calculations are displayed in the figures and tables. It also contains some results published elsewhere.]

References

  1. P. Hodgson, E. Běták, Phys. Rep. 374, 1 (2003)

    Article  ADS  Google Scholar 

  2. M.S. Hussein, Ann. Phys. 90, 48 (1975)

    Article  ADS  Google Scholar 

  3. M.S. Hussein, Eur. Phys. J. A 53, 110 (2017)

    Article  ADS  Google Scholar 

  4. C.A. Bertulani, L.F. Canto, M.S. Hussein, Shubhchintak, T.V. Nhan Hao, Int. J. Mod. Phys. E 28, 1950109 (2019)

  5. G.R. Satchler, Direct Nuclear Reactions (Oxford University Press, 1983)

  6. N. Glendenning, Direct nuclear reactions (World Scientific, Singapore, 2004)

    Book  MATH  Google Scholar 

  7. T. Ohmura, B. Imanishi, M. Ichimura, M. Kawai, Progress Theoretical Phys. 41, 391 (1969)

    Article  ADS  Google Scholar 

  8. I.J. Thompson, Comput. Phys. Rep. 7, 167 (1988)

    Google Scholar 

  9. A.M. Mukhamedzhanov, Shubhchintak, C.A. Bertulani, T.V.N. Hao, Phys. Rev. C 95, 024616 (2017)

  10. D.W. Bardayan, J. Phys. G 43, 043001 (2016)

    Article  ADS  Google Scholar 

  11. C.A. Bertulani, Shubhchintak, A. Mukhamedzhanov, A.S. Kadyrov, A. Kruppa, D.Y. Pang, J. Phys.: Conf. Ser. 703, 012007 (2016)

  12. R.E. Tribble, C.A. Bertulani, M.L. Cognata, A.M. Mukhamedzhanov, C. Spitaleri, Rep. Prog. Phys. 77, 106901 (2014)

    Article  ADS  Google Scholar 

  13. C.A. Gagliardi, R.E. Tribble, A. Azhari, H.L. Clark, Y.W. Lui, A.M. Mukhamedzhanov, A. Sattarov, L. Trache, V. Burjan, J. Cejpek et al., Phys. Rev. C 59, 1149 (1999)

    Article  ADS  Google Scholar 

  14. J.S. Thomas, D.W. Bardayan, J.C. Blackmon, J.A. Cizewski, U. Greife, C.J. Gross, M.S. Johnson, K.L. Jones, R.L. Kozub, J.F. Liang et al., Phys. Rev. C 71, 021302 (2005)

    Article  ADS  Google Scholar 

  15. A.M. Mukhamedzhanov, F.M. Nunes, P. Mohr, Phys. Rev. C 77, 051601 (2008)

    Article  ADS  Google Scholar 

  16. R.C. Johnson, P.J.R. Soper, Phys. Rev. C 1, 976 (1970)

    Article  ADS  Google Scholar 

  17. N. Austern, Y. Iseri, M. Kamimura, M. Kawai, G. Rawitscher, M. Yahiro, Phys. Rep. 154, 125 (1987)

    Article  ADS  Google Scholar 

  18. A. Deltuva, Phys. Rev. C 88, 011601 (2013)

    Article  ADS  Google Scholar 

  19. E.O. Alt, L.D. Blokhintsev, A.M. Mukhamedzhanov, A.I. Sattarov, Phys. Rev. C 75, 054003 (2007)

    Article  ADS  Google Scholar 

  20. N.J. Upadhyay, A. Deltuva, F.M. Nunes, Phys. Rev. C 85, 054621 (2012)

    Article  ADS  Google Scholar 

  21. Y.H. Song, Y. Kim, J. Korean Phys. Soc. 73, 1247 (2018)

    Article  ADS  Google Scholar 

  22. Shubhchintak, P. Descouvemont, Phys. Rev. C 100, 034611 (2019)

  23. Shubhchintak, P. Descouvemont, Phys. Lett. B 811, 135874 (2020)

  24. P. Descouvemont, D. Baye, Rep. Prog. Phys. 73, 036301 (2010)

    Article  ADS  Google Scholar 

  25. P. Descouvemont, Comput. Phys. Commun. 200, 199 (2016)

    Article  ADS  Google Scholar 

  26. D. Baye, Phys. Rep. 565, 1 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  27. T. Tamura, Phys. Rep. 14C, 59 (1974)

    Article  ADS  Google Scholar 

  28. M. Gómez-Ramos, A.M. Moro, J. Gómez-Camacho, I.J. Thompson, Phys. Rev. C 92, 014613 (2015)

    Article  ADS  Google Scholar 

  29. A.M. Moro, F.M. Nunes, R.C. Johnson, Phys. Rev. C 80, 064606 (2009)

    Article  ADS  Google Scholar 

  30. J. Lei, A.M. Moro, Phys. Rev. C 97, 011601 (2018)

    Article  ADS  Google Scholar 

  31. I. Thompson, F. Nunes, Nuclear Reactions for Astrophysics: Principles, Calculation and Applications of Low-Energy Reactions (Cambridge University Press, 2009)

  32. C. Bloch, Nucl. Phys. 4, 503 (1957)

    Article  Google Scholar 

  33. K.L. Baluja, P.G. Burke, L.A. Morgan, Comput. Phys. Commun. 27, 299 (1982)

    Article  ADS  Google Scholar 

  34. C. Oliver, P. Forsyth, J. Hutton, G. Kaye, J. Mines, Nucl. Phys. A 127, 567 (1969)

    Article  ADS  Google Scholar 

  35. N. Oulebsir, F. Hammache, P. Roussel, M.G. Pellegriti, L. Audouin, D. Beaumel, A. Bouda, P. Descouvemont, S. Fortier, L. Gaudefroy et al., Phys. Rev. C 85, 035804 (2012)

  36. D.Y. Pang, W.M. Dean, A.M. Mukhamedzhanov, Phys. Rev. C 91, 024611 (2015)

    Article  ADS  Google Scholar 

  37. V. Valković, G. Paić, I. Šlaus, P. Tomaš, M. Cerineo, G.R. Satchler, Phys. Rev. 139, B331 (1965)

    Article  ADS  Google Scholar 

  38. A.J. Koning, J.P. Delaroche, Nucl. Phys. A 713, 231 (2003)

    Article  ADS  Google Scholar 

  39. F.D. Becchetti, E.R. Flynn, D.L. Hanson, J.W. Sunier, Nucl. Phys. A 305, 293 (1978)

    Article  ADS  Google Scholar 

  40. R.J. deBoer, J. Görres, M. Wiescher, R.E. Azuma, A. Best, C.R. Brune, C.E. Fields, S. Jones, M. Pignatari, D. Sayre et al., Rev. Mod. Phys. 89, 035007 (2017)

  41. X. Li, C. Liang, C. Cai, Nucl. Phys. A 789, 103 (2007)

    Article  ADS  Google Scholar 

  42. D.Y. Pang, F.M. Nunes, A.M. Mukhamedzhanov, Phys. Rev. C 75, 024601 (2007)

    Article  ADS  Google Scholar 

  43. N.B. Nguyen, F.M. Nunes, R.C. Johnson, Phys. Rev. C 82, 014611 (2010)

    Article  ADS  Google Scholar 

  44. K.T. Schmitt, K.L. Jones, S. Ahn, D.W. Bardayan, A. Bey, J.C. Blackmon, S.M. Brown, K.Y. Chae, K.A. Chipps, J.A. Cizewski et al., Phys. Rev. C 88, 064612 (2013)

    Article  ADS  Google Scholar 

  45. D. Walter, S.D. Pain, J.A. Cizewski, F.M. Nunes, S. Ahn, T. Baugher, D.W. Bardayan, T. Baumann, D. Bazin, S. Burcher et al., Phys. Rev. C 99, 054625 (2019)

    Article  ADS  Google Scholar 

  46. V. Srivastava, C. Bhattacharya, T.K. Rana, S. Manna, S. Kundu, S. Bhattacharya, K. Banerjee, P. Roy, R. Pandey, G. Mukherjee et al., Phys. Rev. C 91, 054611 (2015)

    Article  ADS  Google Scholar 

  47. H. Jayatissa, G. Rogachev, V. Goldberg, E. Koshchiy, G. Christian, J. Hooker, S. Ota, B. Roeder, A. Saastamoinen, O. Trippella et al., Phys. Lett. B 802, 135267 (2020)

    Article  Google Scholar 

  48. C.B. Hamill, P.J. Woods, D. Kahl, R. Longland, J.P. Greene, C. Marshall, F. Portillo, K. Setoodehnia, Eur. Phys. J. A 56, 36 (2020)

    Article  ADS  Google Scholar 

  49. A. Strömich, B. Steinmetz, R. Bangert, B. Gonsior, M. Roth, P. von Brentano, Phys. Rev. C 16, 2193 (1977)

    Article  ADS  Google Scholar 

  50. K.T. Schmitt, K.L. Jones, A. Bey, S.H. Ahn, D.W. Bardayan, J.C. Blackmon, S.M. Brown, K.Y. Chae, K.A. Chipps, J.A. Cizewski et al., Phys. Rev. Lett. 108, 192701 (2012)

    Article  ADS  Google Scholar 

  51. R. Wolski, A. Fomichev, A. Rodin, S. Sidorchuk, S. Stepantsov, G. Ter-Akopian, M. Chelnokov, V. Gorshkov, A. Lavrentev, Y. Oganessian et al., Phys. Lett. B 467, 8 (1999)

    Article  ADS  Google Scholar 

  52. C.V. Sukumar, J. Phys. A 18, 2917 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  53. D. Baye, Phys. Rev. Lett. 58, 2738 (1987)

    Article  ADS  Google Scholar 

  54. D. Ridikas, J. Vaagen, J. Bang, Nucl. Phys. A 609, 21 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 801505. Author also thanks Pierre Descouvemont for fruitful comments and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubhchintak.

Additional information

Communicated by Nicolas Alamanos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shubhchintak Cluster transfer reactions with the combined R-matrix and Lagrange-mesh methods. Eur. Phys. J. A 57, 32 (2021). https://doi.org/10.1140/epja/s10050-021-00344-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00344-8

Navigation