Skip to main content

Nuclear clusters as the first stepping stones for the chemical evolution of the universe


It is a well-established fact that the generation of the heavy elements occurred in stars—the Cauldrons of the Cosmos—via multiple complex nuclear reaction processes during stellar life and death. This paper will address the question of the first step, the formation of heavier elements such as carbon and oxygen from the primordial elemental abundance distribution in first stars. This nucleosynthesis can be facilitated by nuclear clustering of primordial isotopes in hot and highly convective first stars, provided that a helium rich or hydrogen depleted environment is available. The paper will summarize the associated nuclear reactions and the nucleosynthesis paths linking \(^4\)He to \(^{12}\)C. This will be based on an analysis of new experimental data for several of the anticipated nuclear reactions, and the role they might play at different temperature and density conditions in first star matter.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data shown here are preliminary. Data will be made available in future publications.]


  1. 1.

    Robert V. Wagoner, William A. Fowler, F. Hoyle, On the synthesis of elements at very high temperatures. Astrophys. J. 148, 3 (1967)

    ADS  Google Scholar 

  2. 2.

    David N. Schramm, Primordial nucleosynthesis. Proc. Natl. Acad. Sci. 95(1), 42–46 (1998)

    ADS  Google Scholar 

  3. 3.

    Richard H. Cyburt, Brian D. Fields, Keith A. Olive, Tsung-Han Yeh, Big bang nucleosynthesis: Present status. Rev. Mod. Phys. 88, 015004 (Feb 2016)

  4. 4.

    R.A. Alpher, H. Bethe, G. Gamow, The origin of chemical elements. Phys. Rev. 73, 803–804 (Apr 1948)

  5. 5.

    Thomas Rauscher, James H. Applegate, John J. Cowan, Friedrich-Karl Thielemann, Michael Wiescher, Production of heavy elements in inhomogeneous cosmologies. Astrophys. J. 429, 499 (1994)

    ADS  Google Scholar 

  6. 6.

    Sean G. Ryan, Timothy C. Beers, Keith A. Olive, Brian D. Fields, John E. Norris, Primordial lithium and big bang nucleosynthesis. Astrophys. J. 530(2), L57–L60 (2000)

    ADS  Google Scholar 

  7. 7.

    Richard H. Cyburt, Brian D. Fields, Keith A. Olive, An update on the big bang nucleosynthesis prediction for \(^7\)Li: the problem worsens. J. Cosmol. Astroparticle Phys. 2008(11), 012 (2008)

    Google Scholar 

  8. 8.

    M. Fraser, A.R. Casey, G. Gilmore, A. Heger, C. Chan, The mass distribution of Population III stars. Mon. Notices R. Astronomical Soc. 468(1), 418–425,02 (2017)

    ADS  Google Scholar 

  9. 9.

    S.C. Keller, M.S. Bessell, A. Frebel, A.R. Casey, M. Asplund, H.R. Jacobson, K. Lind, J.E. Norris, D. Yong, A. Heger, Z. Magic, G.S. Da Costa, B.P. Schmidt, P. Tisserand, A single low-energy, iron-poor supernova as the source of metals in the star SMSS J031300.36-670839.3. Nature 506, 463–466 (2014)

    ADS  Google Scholar 

  10. 10.

    E.E. Salpeter, Nuclear Reactions in the Stars. I. Proton-Proton Chain. Phys. Rev. 88, 547–553 (Nov 1952)

  11. 11.

    M. Wiescher, J. Gorres, S. Graff, L. Buchmann, F.K. Thielemann, The hot Proton-Proton chains in low-metallicity objects. Astrophys. J. 343, 352 (1989)

    ADS  Google Scholar 

  12. 12.

    O Clarkson and F Herwig. Convective H-He Interactions in Massive Population III Stellar Evolution Models. Monthly Notices of the Royal Astronomical Society, 10 (2020). staa3328

  13. 13.

    Christian Iliadis, Nucle Phys Stars (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007)

    Google Scholar 

  14. 14.

    J.-P. Ebran, T. Nikšić, E. Khan, D. Vretenar, How atomic nuclei cluster. Nature 487, 341–344 (2012)

    ADS  Google Scholar 

  15. 15.

    H. Oberhummer, A. Csótó, H. Schlattl, Stellar production rates of carbon and its abundance in the universe. Science 289(5476), 88–90 (2000)

    ADS  Google Scholar 

  16. 16.

    S.I. Fedotov, O.I. Kartavtsev, V.I. Kochkin, A.V. Malykh, \(3\alpha \)-cluster structure of the \({0}^{+}\) states in \(^{12}{{{\rm C}}}\) and the effective \(\alpha - \alpha \) interactions. Phys. Rev. C 70, 014006 (2004)

    ADS  Google Scholar 

  17. 17.

    M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel, A. Richter, Structure of the Hoyle State in \(^{12}{{{\rm C}}}\). Phys. Rev. Lett. 98, 032501 (2007)

    ADS  Google Scholar 

  18. 18.

    S.I. Fedotov, O.I. Kartavtsev, A.V. Malykh, Effective three-body interactions in the \(\alpha \)-cluster model for the \(^{12}\)C nucleus. Eur. Phys. J. A 26, 201–207 (2005)

    ADS  Google Scholar 

  19. 19.

    T.A. Lähde, U. Meißner, E. Epelbaum, An update on fine-tuning in the triple-alpha process. Eur. Phys. J. A 56, 89 (2020)

    ADS  Google Scholar 

  20. 20.

    W. von Oertzen, Martin Freer, Yoshiko Kanada-En’yo, Nuclear clusters and nuclear molecules. Phys. Rep. 432(2), 43–113 (2006)

    ADS  Google Scholar 

  21. 21.

    T. Hansen, C.J. Hansen, N. Christlieb, D. Yong, M.S. Bessell, A.E. García Pérez, T.C. Beers, V.M. Placco, A. Frebel, J.E. Norris, M. Asplund, Exploring the origin of lithium, carbon, strontium, and barium with four new ultra metal-poor stars. Astrophys. J. 787(2), 162 (2014)

    ADS  Google Scholar 

  22. 22.

    Guillaume Hupin, Sofia Quaglioni, Petr Navrátil, Unified description of \(^{6}\text{ Li }\) structure and deuterium-\(^{4}\text{ He }\) dynamics with chiral two- and three-nucleon forces. Phys. Rev. Lett. 114, 212502 (2015)

    ADS  Google Scholar 

  23. 23.

    H. Nishioka, Two-alpha-particle-plus-dinucleon-cluster model for \(^{10}\)B and \(^{10}\)Be. J. Phys. G 10(12), 1713–1729 (1984)

    ADS  Google Scholar 

  24. 24.

    Yoshiko Kanada-En’yo, \(^{10}\text{ B }+\alpha \) states with chain-like structures in \(^{14}\text{ N }\). Phys. Rev. C 92, 064326 (2015)

    ADS  Google Scholar 

  25. 25.

    T. Kawabata, H. Akimune, H. Fujita, Y. Fujita, M. Fujiwara, K. Hara, K. Hatanaka, M. Itoh, Y. Kanada-En’yo, S. Kishi, K. Nakanishi, H. Sakaguchi, Y. Shimbara, A. Tamii, S. Terashima, M. Uchida, T. Wakasa, Y. Yasuda, H.P. Yoshida, M. Yosoi, \(2\alpha +t\) cluster structure in \(^{11}\)B. Phys. Lett. B 646(1), 6–11 (2007)

    ADS  Google Scholar 

  26. 26.

    W.J. Huang, G. Audi, F.G. Meng Wang, S.Naimi Kondev, Xu Xing, The AME2016 atomic mass evaluation (I). Evaluation of input data and adjustment procedures. Chin. Phys. C 41(3), 030002 (2017)

    ADS  Google Scholar 

  27. 27.

    G. Meng Wang, F.G. Audi, W.J. Kondev, S.Naimi Huang, Xu Xing, The AME2016 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 41(3), 030003 (2017)

    Google Scholar 

  28. 28.

    K.G. Kibler, Angular distributions and total cross sections of charged particles from \({\text{ Li }}^{6}\)+\({\text{ Li }}^{6}\) as a function of energy. Phys. Rev. 152, 932–949 (1966)

    ADS  Google Scholar 

  29. 29.

    D.E. Alburger, P.D. Parker, D.J. Bredin, D.H. Wilkinson, P.F. Donovan, A. Gallmann, R.E. Pixley, L.F. Chase, R.E. McDonald, Properties of the 4.77- and 5.16-MeV States of \({\text{ B }}^{10}\). Phys. Rev. 143, 692–711 (1966)

    ADS  Google Scholar 

  30. 30.

    G. Hardie, B.W. Filippone, A.J. Elwyn, M. Wiescher, R.E. Segel, Resonant alpha capture by \(^{7}\text{ Be }\) and \(^{7}\text{ Li }\). Phys. Rev. C 29, 1199–1206 (1984)

    ADS  Google Scholar 

  31. 31.

    P. Paul, N.G. Puttaswamy, D. Kohler, Excited States in \({\text{ B }}^{11}\) Observed in the \({\text{ Li }}^{7}(\alpha,\gamma )\) Reaction. Phys. Rev. 164, 1332–1342 (1967)

    ADS  Google Scholar 

  32. 32.

    Hanhardt. in preparation

  33. 33.

    Q. Liu, M. Febbraro, R.J. deBoer, S. Aguilar, A. Boeltzig, Y. Chen, M. Couder, J. Görres, E. Lamere, S. Lyons, K.T. Macon, K. Manukyan, L. Morales, S. Pain, W.A. Peters, C. Seymour, G. Seymour, R. Toomey, B. Vande Kolk, J. Weaver, M. Wiescher, Low-energy cross-section measurement of the \(^{10}\text{ B }(\alpha, n)^{13}\text{ N }\) reaction and its impact on neutron production in first-generation stars. Phys. Rev. C 101, 025808 (2020)

    ADS  Google Scholar 

  34. 34.

    E.S. Shire, J.R. Wormald, G. Lindsay-Jones, A. Lundén, A.G. Stanley, Nuclear reactions produced by the bombardment of boron by low energy alpha particles. Phil. Mag. 44(358), 1197–1212 (1953)

    Google Scholar 

  35. 35.

    E.S. Shire, R.D. Edge, The production of neutrons and protons by the bombardment of boron by low energy alpha-particles. Phil. Mag. 46(377), 640–651 (1955)

    Google Scholar 

  36. 36.

    A. Gula, R.J. deBoer, K. Manukyan, M. Wiescher, R. Kelmar, S. Aguilar, S. Henderson, S. Moylan, J. Wilkinson, B. Frentz, S. McGuinness, C. Seymour, S. Shahina, J. Arroyo, and C. Boomershine. In preparation

  37. 37.

    W. Kohler, G. Gruber, A. Steinhauser, K. Bethge, Nuclear reactions of 24 MeV \(^7\)Li on \(^{10}\)B. Nucl. Phys. A 290(1), 233–252 (1977)

    ADS  Google Scholar 

  38. 38.

    M.E. Clark, K.W. Kemper, Transfer reaction studies to states in \(^{14}\)N and \(^{14}\)C. Nucl. Phys. A 425(1), 185–204 (1984)

    ADS  Google Scholar 

  39. 39.

    T.R. Wang, R.B. Vogelaar, R.W. Kavanagh, \(^{11}{{{\rm B}}}+\alpha \) reaction rates and primordial nucleosynthesis. Phys. Rev. C 43, 883–896 (1991)

    ADS  Google Scholar 

  40. 40.

    W. Kohler, H. Schmidt-Böcking, K. Bethge, Investigation of \(^{15}\)N by the reactions \(^{11}\)B\((^7\)Li\(, t)^{15}\)N and \(^{10}\)B\((^7\)Li\(, d)^{15}\)N. Nucl. Phys. A 262(1), 113–124 (1976)

    ADS  Google Scholar 

  41. 41.

    M. Wiescher, R.J. deBoer, J. Görres, A. Gula, Q. Liu, Neutron sources in early stars. Acta Phys. Pol. B 51, 631 (2020)

    ADS  Google Scholar 

  42. 42.

    A. Best, M. Beard, J. Görres, M. Couder, R. deBoer, S. Falahat, R.T. Güray, A. Kontos, K.-L. Kratz, P.J. LeBlanc, Q. Li, S. O’Brien, N. Özkan, M. Pignatari, K. Sonnabend, R. Talwar, W. Tan, E. Uberseder, M. Wiescher, Measurement of the reaction \({}^{17}\)O\({(\alpha, n)}^{20}\)Ne and its impact on the \(s\) process in massive stars. Phys. Rev. C 87, 045805 (2013)

    ADS  Google Scholar 

  43. 43.

    A. Best, S. Falahat, J. Görres, M. Couder, R. deBoer, R.T. Güray, A. Kontos, K.-L. Kratz, P.J. LeBlanc, Q. Li, S. O’Brien, N. Özkan, K. Sonnabend, R. Talwar, E. Uberseder, M. Wiescher, Measurement of the reaction \({}^{18}\)O\({(\alpha, n)}^{21}\)Ne. Phys. Rev. C 87, 045806 (2013)

    ADS  Google Scholar 

  44. 44.

    A.M. Lane, R.G. Thomas, R-matrix theory of nuclear reactions. Rev. Mod. Phys. 30, 257–353 (1958)

    ADS  MathSciNet  Google Scholar 

  45. 45.

    R.E. Azuma, E. Uberseder, E.C. Simpson, C.R. Brune, H. Costantini, R.J. de Boer, J. Görres, M. Heil, P.J. LeBlanc, C. Ugalde, M. Wiescher, AZURE: An \(R\)-matrix code for nuclear astrophysics. Phys. Rev. C 81(4), 045805 (2010)

    ADS  Google Scholar 

  46. 46.

    E. Uberseder and R. J. deBoer. AZURE2 User Manual, (2015)

  47. 47.

    C.R. Brune, Alternative parametrization of R -matrix theory. Phys. Rev. C 66, 044611 (2002)

    ADS  Google Scholar 

  48. 48.

    Yoshiko Kanada-En’yo, Tadahiro Suhara, Yasutaka Taniguchi, (2014) Approximation of reduced width amplitude and application to cluster decay width. Progress Theoretical Exp Phys 7, 07 (2014). 073D02

    Google Scholar 

  49. 49.

    E.P. Wigner, L. Eisenbud, Higher angular momenta and long range interaction in resonance reactions. Phys. Rev. 72, 29–41 (1947)

    ADS  Google Scholar 

  50. 50.

    R.J. deBoer, J. Görres, M. Wiescher, R.E. Azuma, A. Best, C.R. Brune, C.E. Fields, S. Jones, M. Pignatari, D. Sayre, K. Smith, F.X. Timmes, E. Uberseder, The \(^{12} C (\alpha,\gamma )^{16}{{{ O}}}\) reaction and its implications for stellar helium burning. Rev. Mod. Phys. 89, 035007 (2017)

    ADS  Google Scholar 

  51. 51.

    J.E. Nelson, J. Napolitano, S.J. Freedman, E2 strength of the lowest resonance in \(^{6}\text{ Li }\)(\(\alpha \),\(\gamma \)): collective effects in the 1p shell. Phys. Rev. C 31, 2295–2296 (1985)

    ADS  Google Scholar 

  52. 52.

    P. Heusi, M. Berta, V. Meyer, R.E. Pixlay, \(^6\)Li-\(\alpha \) scattering below 3 MeV. Nucl. Phys. A 357(2), 381–397 (1981)

    ADS  Google Scholar 

  53. 53.

    J. Napolitano, S.J. Freedman, The width of the 5.11 MeV state in \(^{10}\)B and isovector parity mixing. Nucl. Phys. A 417(2), 289–300 (1984)

    ADS  Google Scholar 

  54. 54.

    P.D. Forsyth, H.T. Tu, W.F. Hornyak, The \(^6\)Li\((\alpha,\gamma )^{10}\)B reaction and the energy levels of \(^{10}\)B. Nucl. Phys. 82(1), 33–48 (1966)

    Google Scholar 

  55. 55.

    R.H. Spear, Z.E. Switkowski, D.L. Kennedy, J.C.P. Heggie, Resonance strength of the 1175 keV resonance in \(^6\)Li\((\alpha,\gamma )^{10}\)B. Nucl. Phys. A 318(1), 21–28 (1979)

    ADS  Google Scholar 

  56. 56.

    E.L. Sprenkel, J.W. Olness, R.E. Segel, Identification of doublet states at 5.16 MeV in \({\text{ B }}^{10}\). Phys. Rev. Lett. 7, 174–177 (1961)

    ADS  Google Scholar 

  57. 57.

    R.E. Segel, P.P. Singh, S.S. Hanna, M.A. Grace, Gamma rays from \({\text{ B }}^{10}\)+\(p\); decay schemes and excitation functions. Phys. Rev. 145, 736–745 (1966)

    ADS  Google Scholar 

  58. 58.

    W. Auwärter, V. Meyer, Excited states of \(^{10}\)B from the \(^6\)Li\((\alpha,\gamma )\) and \(^9\)Be\((p,\gamma )\) reactions. Nucl. Phys. A 242(1), 129–140 (1975)

    ADS  Google Scholar 

  59. 59.

    D. Zahnow, C. Rolfs, S. Schmidt, H.P. Trautvetter, Low-energy \(S(E)\) factor of \(^9\)Be\((p,\alpha )^6\)Li and \(^9\)Be\((p, d)^8\)Be. Zeitschrift für Physik A Hadrons and Nuclei 359, 211–218 (1997)

    ADS  Google Scholar 

  60. 60.

    D.R. Tilley, J.H. Kelley, J.L. Godwin, D.J. Millener, J.E. Purcell, C.G. Sheu, H.R. Weller, Energy levels of light nuclei \(A\) = 8,9,10. Nucl. Phys. A 745(3), 155–362 (2004)

    ADS  Google Scholar 

  61. 61.

    R.Y. Cusson, Levels in \(^{11}\)B from \(^7\)Li\((\alpha,\alpha )^7\)Li and \(^7\)Li\((\alpha,\alpha ^{\prime })^7\)Li\(^*\)(0.48). Nucl. Phys. 86(3), 481–508 (1966)

    Google Scholar 

  62. 62.

    Hans Bichsel, T.W. Bonner, Reactions \({\text{ Li }}^{7}(\alpha, n){\text{ B }}^{10}\), \({\text{ Li }}^{7}(\alpha, {\alpha }^{^{\prime }}){\text{ Li }}^{7*}\), and \({\text{ B }}^{10}(\text{ n }, \alpha ){\text{ Li }}^{7}\). Phys. Rev. 108, 1025–1027 (1957)

    ADS  Google Scholar 

  63. 63.

    C.W. Li, R. Sherr, Inelastic scattering of alpha particles by lithium. Phys. Rev. 96, 389–393 (1954)

    ADS  Google Scholar 

  64. 64.

    H. Yamaguchi, T. Hashimoto, S. Hayakawa, D.N. Binh, D. Kahl, S. Kubono, Y. Wakabayashi, T. Kawabata, T. Teranishi, \(\alpha \) resonance structure in \(^{11}\text{ B }\) studied via resonant scattering of \(^{7}\text{ Li }\)+\(\alpha \). Phys. Rev. C 83, 034306 (2011)

    ADS  Google Scholar 

  65. 65.

    H. Bohlen, N. Marquardt, W. Von Oertzen, P.H. Gorodetzky, Nucleon exchange in the low-energy scattering of \(\alpha \)-particles on \(^6\)Li and \(^7\)Li. Nucl. Phys. A 179(2), 504–512 (1972)

    ADS  Google Scholar 

  66. 66.

    J.P. Stoquert, N. Bendjaballah, H. Beaumevieille, C. Gérardin, R. Seltz, Niveaux excités de \(^{11}\)B observés dans la diffusion \(^4\)He + \(^7\)Li. J. Phys. France 40(9), 813–817 (1979)

    Google Scholar 

  67. 67.

    G. Manning, B. Singh, A note on the \(^{10}\)B\((\alpha,p)^{13}\)C reaction. Proc. Phys. Soc. Sect. A 66(9), 842–843 (1953)

    ADS  Google Scholar 

  68. 68.

    L. Van der Zwan, K.W. Geiger, The \(^{10}{{{\rm B}}}(\alpha,n) ^{13}\)N cross section for \(\alpha \)-energies from 1.0–5 MeV. Nucl. Phys. A 216(1), 188–198 (1973)

    ADS  Google Scholar 

  69. 69.

    H. Chen, X.M. Wang, L. Shao, J.R. Liu, A.C. Yen, Wei kan Chu., Cross-sections of \(^{10}\)B\((\alpha , p)^{13}\)C nuclear reaction for boron analysis. Nucl. Instruments Methods Phys. Res. Sect. B 211(1), 1–6 (2003)

  70. 70.

    L.C. McIntyre, J.A. Leavitt, M.D. Ashbaugh, Z. Lin, J.O. Stoner, Cross sections for 170.5\(^\circ \) backscattering of \(^4\)He by the isotopes of boron for \(^4\)He energies between 1.0 and 3.3 MeV. Nucl. Instruments Methods Phys. Res. Sect. B 64(1), 457–460 (1992)

    ADS  Google Scholar 

  71. 71.

    Georgeanne R. Caughlan, William A. Fowler, Thermonuclear reaction rates v. Atomic Data Nucl Data Tables 40(2), 283–334 (1988)

    ADS  Google Scholar 

  72. 72.

    E.T. Jurney, J.W. Starner, J.E. Lynn, S. Raman, Thermal-neutron capture by \({}^{14}\text{ N }\). Phys. Rev. C 56, 118–134 (1997)

    ADS  Google Scholar 

  73. 73.

    G. M. Hale, P. G. Young, M. Chadwick, and Z.-P. Chen. New Evaluations of Neutron Cross Sections for \(^{14}\)N and \(^{16}\)O. In Syed M. Qaim, editor, Nuclear Data for Science and Technology, pages 921–923, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg

  74. 74.

    H. Fletcher Gabbard, Bichsel, and T.W. Bonner, The disintegration of nitrogen by fast neutrons. Nucl. Phys. 14(2), 277–294 (1959)

  75. 75.

    J.H. Gibbons, R.L. Macklin, Total neutron yields from light elements under proton and alpha bombardment. Phys. Rev. 114, 571–580 (1959)

    ADS  Google Scholar 

  76. 76.

    C.H. Johnson, H.H. Barschall, Interaction of fast neutrons with nitrogen. Phys. Rev. 80, 818–823 (1950)

    ADS  Google Scholar 

  77. 77.

    G.L. Morgan, Cross sections for the \(^{14}\)N\((n, p_0)\), \((n,\alpha _0)\), and the \((n,\alpha _1)\) reactions from 0.5 to 15 MeV. Nucl. Sci. Eng. 70, 163–176 (1979)

    Google Scholar 

  78. 78.

    M. Niecke, M. Niemeier, R. Weigel, H. Wirzba-Lorenz, Angular distributions of neutron polarization from the \(^{14}\)C\((p, n)^{14}\)N and \(^{11}\)B\((\alpha,n)^{14}\)N reactions and \(R\)-matrix analysis of \(^{15}\)N in the excitation-energy range between 11.5 and 12.5 MeV. Nucl. Phys. A 289(2), 408–424 (1977)

    ADS  Google Scholar 

  79. 79.

    F.C. Young, A.S. Figuera, C.E. Steerman, Properties of the 12.50 and 12.52 MeV levels of \(^{15}\)N. Nucl. Phys. A 173(2), 239–247 (1971)

    ADS  Google Scholar 

  80. 80.

    W.D. Roseborough, J.J.G. McCue, W.M. Preston, C. Goodman, The Reaction \({\text{ C }}^{14}(p, n){\text{ N }}^{14}\): Excited States in \({\text{ N }}^{15}\). Phys. Rev. 83, 1133–1136 (1951)

    ADS  Google Scholar 

  81. 81.

    Richard M. Sanders, Study of the \({\text{ C }}^{14}(p, n){\text{ N }}^{14}\) and \({\text{ C }}^{14}(\alpha, n){\text{ O }}^{17}\) Reactions. Phys. Rev. 104, 1434–1440 (1956)

    ADS  Google Scholar 

  82. 82.

    W.R. Harris, J.C. Armstrong, Elastic scattering of 1- to 2.7-MeV Protons by \({\text{ C }}^{14}\). Phys. Rev. 171, 1230–1241 (1968)

    ADS  Google Scholar 

  83. 83.

    Jerry D. Henderson, Emmett L. Hudspeth, William R. Smith, Capture and elastic scattering of protons by \(^{14}\text{ C }\). Phys. Rev. 172, 1058–1062 (1968)

    ADS  Google Scholar 

  84. 84.

    R.A. Dayras, Z.E. Switkowski, T.A. Tombrello, \(^{14}\)C production by the reaction \(^{11}\)B\((\alpha, p)^{14}\)C. Nucl. Phys. A 261(3), 365–372 (1976)

    ADS  Google Scholar 

  85. 85.

    A. Turowiecki, A. Saganek, M. Siemiński, E. Wesołowski, Z. Wilhelmi, The \(^{11}\)B\((\alpha,p)^{14}\)C reaction below 1.7 MeV bombarding energy. Nucl. Phys. A 468(1), 29–37 (1987)

    ADS  Google Scholar 

  86. 86.

    R.J. deBoer, C.R. Brune, M. Febrarro, J. Görres, I.J. Thompson, M. Wiescher, Sensitivity of the \(^{13}\text{ C }(\alpha, n)^{16}\text{ O }s\) factor to the uncertainty in the level parameters of the near-threshold state. Phys. Rev. C 101, 045802 (2020)

    ADS  Google Scholar 

  87. 87.

    M. Pignatari, F. Herwig, R. Hirschi, M. Bennett, G. Rockefeller, C. Fryer, F.X. Timmes, C. Ritter, A. Heger, S. Jones, U. Battino, A. Dotter, R. Trappitsch, S. Diehl, U. Frischknecht, A. Hungerford, G. Magkotsios, C. Travaglio, P. Young, NuGrid Stellar Data Set. I. stellar yields from H to Bi for stars with metallicities Z = 0.02 and Z = 0.01. Astrophys. J. Suppl. Ser. 225, 24 (2016)

    ADS  Google Scholar 

  88. 88.

    R.H. Cyburt, A.M. Amthor, R. Ferguson, Z. Meisel, K. Smith, S. Warren, A. Heger, R.D. Hoffman, T. Rauscher, A. Sakharuk, H. Schatz, F.K. Thielemann, M. Wiescher, The JINA REACLIB database: its recent updates and impact on type-I X-ray bursts. Astrophys. J. Suppl. Ser. 189, 240–252 (2010)

    ADS  Google Scholar 

Download references


This research utilized resources from the Notre Dame Center for Research Computing and was supported by the National Science Foundation through Grant No. Phys-2011890, and the Joint Institute for Nuclear Astrophysics through Grant No. Phys-1430152 (JINA Center for the Evolution of the Elements).

Author information



Corresponding author

Correspondence to Michael Wiescher.

Additional information

Communicated by Nicolas Alamanos

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wiescher, M., Clarkson, O., deBoer, R.J. et al. Nuclear clusters as the first stepping stones for the chemical evolution of the universe. Eur. Phys. J. A 57, 24 (2021).

Download citation