Skip to main content
Log in

Strong decay analysis of excited nonstrange charmed mesons: implications for spectroscopy

  • Regular Article – Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The strong decays of experimentally observed excited nonstrange charmed mesons are analyzed in the framework of heavy quark effective theory (HQET). The ratio of the strong decay rates identified the doublets \((D_1(2420), D_2^*(2460))\) as \((1^3P_1, 1^3P_2)\), \((D(2550), D_J^*(2600))\) as \((2^1S_0, 2^3S_1)\) and \((D(2740), D_J^*(2750))\) as \((1^3D_2, 1^3D_3)\). The \(D_J(3000)\) is interpreted as the mixing of \(2^1P_1 - 2^3P_1\) states. The resonances \(D{_{J}^*}(3000)\) and \(D_2^*(3000)\) are identified with \(2^3P_2\) and \(1^3F_2\) quantum states, respectively. Such states allows to construct the Regge trajectories in \((M^2, J)\) and \((M^2, n_r)\) planes. We fix the slope and the intercept of each Regge line and estimate the masses of higher excited nonstrange charmed mesons which are lying on the Regge lines. Also, the ratios of the strong decay rates of this higher excited nonstrange charmed mesons are calculated. It can provide valuable information to future experimental search.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data.]

References

  1. R. Aaij et al., (LHCb Collaboration), Phys. Rev. D 94, 072001 (2016)

  2. R. Aaij et al., (LHCb Collaboration), Phys. Rev. D 92, 032002 (2015)

  3. R. Aaij et al., (LHCb Collaboration), JHEP 09, 145 (2013)

  4. P. del Amo Sanchez et al., (BABAR Collaboration), Phys. Rev. D 82, 111101(R) (2010)

  5. M. Tanabashi et al., (Particle Data Group), Phys. Rev. D 98, 030001 (2018) (and 2019 update)

  6. P.A. Zyla et al., (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

  7. J.-K. Chena, Eur. Phys. J. C 648, 78 (2018)

    Google Scholar 

  8. V. Kher, N. Devlani, A.K. Rai, Chin. Phys. C 41, 073101 (2017)

    Article  ADS  Google Scholar 

  9. S. Godfrey, K. Moats, Phys. Rev. D 93, 034035 (2016)

    Article  ADS  Google Scholar 

  10. Y. Sun, X. Liu, T. Matsuki, Phys. Rev. D 88, 094020 (2013)

    Article  ADS  Google Scholar 

  11. D.M. Li, P.F. Ji, B. Ma, Eur. Phys. J. C 71, 1582 (2011)

    Article  ADS  Google Scholar 

  12. D. Ebert, R.N. Faustov, V.O. Galkin, Eur. Phys. J. C 66, 197 (2010)

    Article  ADS  Google Scholar 

  13. M. Di Pierro, E. Eichten, Phys. Rev. D 64, 114004 (2001)

    Article  ADS  Google Scholar 

  14. T.A. Lahde, C.J. Nyfalt, D.O. Riska, Nucl. Phys. A 674, 141 (2000)

    Article  ADS  Google Scholar 

  15. K. Cichy, M. Kalinowski, M. Wagner, Phys. Rev. D 94, 094503 (2016)

    Article  ADS  Google Scholar 

  16. X.-H. Zhong, Phys. Rev D 82, 114014 (2010)

    Article  ADS  Google Scholar 

  17. L.-Y. Xiao, X.-H. Zhong, Phys. Rev D 90, 074029 (2014)

    Article  ADS  Google Scholar 

  18. P. Colangelo, F. De Fazio, R. Ferrandes, Phys. Lett. B 634, 235 (2006)

    Article  ADS  Google Scholar 

  19. P. Colangelo, F. De Fazio, F. Giannuzzi, S. Nicotri, Phys. Rev. D 86, 054024 (2012)

    Article  ADS  Google Scholar 

  20. Z.-G. Wang, Phys. Rev. D 83, 014009 (2011)

    Article  ADS  Google Scholar 

  21. Z.-G. Wang, Phys. Rev. D 88, 114003 (2013)

    Article  ADS  Google Scholar 

  22. M. Batra, A. Upadhyay, Eur. Phys. J. C 75, 319 (2015)

    Article  ADS  Google Scholar 

  23. P. Gupta, A. Upadhyay, Phys. Rev. D 97, 014015 (2018)

    Article  ADS  Google Scholar 

  24. A.V. Manohar, M.B. Wise, Heavy Quark Physics (Cambridge University Press, Cambridge, 2000)

    Book  Google Scholar 

  25. M. Neubert, Phys. Rep. 245, 259 (1994)

    Article  ADS  Google Scholar 

  26. A.F. Falk, Nucl. Phys. B 378, 79 (1992)

    Article  ADS  Google Scholar 

  27. A.F. Falk, M.E. Luke, Phys. Lett. B 292, 119 (1992)

    Article  ADS  Google Scholar 

  28. S. Campanella, P. Colangelo, F. De Fazio, Phys. Rev. D 98, 114028 (2018)

    Article  ADS  Google Scholar 

  29. R. Casalbuoni et al., Phys. Lett. B 302, 95 (1993)

    Article  ADS  Google Scholar 

  30. F. De Fazio, Phys. Rev. D 79, 054015 (2009)

    Article  ADS  Google Scholar 

  31. Z.-G. Wang, Eur. Phys. J. A 47, 94 (2011)

    Article  ADS  Google Scholar 

  32. Z.G. He, X.R. Lu, J. Soto, Y. Zheng, Phys. Rev. D 83, 054028 (2011)

    Article  ADS  Google Scholar 

  33. Z.-G. Wang, Int. J. Theor. Phys. 51, 1518 (2012)

    Article  ADS  Google Scholar 

  34. Z.-G. Wang, Mod. Phys. Lett. A 27, 1250197 (2012)

    Article  ADS  Google Scholar 

  35. B. Singh et al., PANDA Collaboration. Phys. Rev. D 95, 032003 (2017)

    Article  ADS  Google Scholar 

  36. B. Singh et al., \({\overline{\text{ P }}}{\text{ ANDA }}\) Collaboration. Eur. Phys. J. A 52, 325 (2016)

    Article  ADS  Google Scholar 

  37. B. Singh et al., \({\overline{\text{ P }}}{\text{ ANDA }}\) Collaboration. Nucl. Phys. A 954, 323 (2016)

    Article  ADS  Google Scholar 

  38. B. Singh et al., \({\overline{\text{ P }}}{\text{ ANDA }}\) Collaboration. Eur. Phys. J. A 51, 107 (2015)

    Article  ADS  Google Scholar 

  39. B. Singh et al., \({\overline{\text{ P }}}{\text{ ANDA }}\) Collaboration. J. Phys. G 46, 045001 (2019)

    Article  ADS  Google Scholar 

  40. G. Barucca et al., PANDA Collaboration. Eur. Phys. J. A 55, 42 (2019)

    Article  ADS  Google Scholar 

  41. G. Barucca et al. (PANDA Collaboration), arXiv:2012.01776v2 [hep-ex] (2020)

  42. P. Colangelo, F. De Fazio, G. Nardulli, N. Di Bartolomeo, R. Gatto, Phys. Rev. D 52, 6422 (1995)

    Article  ADS  Google Scholar 

  43. R. Casalbuoni, A. Deandrea, N. Di Bartolomeo, F. Feruglio, R. Gatto, G. Nardulli, Phys. Rep. 281, 145 (1997)

    Article  ADS  Google Scholar 

  44. Z.-G. Wang, Eur. Phys. J. C 75, 25 (2015)

    Article  ADS  Google Scholar 

  45. Z.-G. Wang, S.L. Wan, Phys. Rev. D 74, 014017 (2006)

    Article  ADS  Google Scholar 

  46. Z.-G. Wang, Nucl. Phys. A 796, 61 (2007)

    Article  ADS  Google Scholar 

  47. P.Z. Huang, L. Zhang, S.L. Zhu, Phys. Rev. D 81, 094025 (2010)

    Article  ADS  Google Scholar 

  48. I.W. Stewart, Nucl. Phys. B 529, 62 (1998)

    Article  ADS  Google Scholar 

  49. S. Fajfer, J. Kamenik, Phys. Rev. D 74, 074023 (2006)

    Article  ADS  Google Scholar 

  50. P. Avery et al., (CLEO Collaboration), Phys. Rev. D 41, 774 (1990)

  51. S. Chekanov et al., (ZEUS Collaboration), Eur. Phys. J C 60, 25 (2009)

  52. H. Abramowicz et al., (ZEUS Collaboration), Nucl. Phys. B 866, 229 (2009)

  53. B. Aubert et al., BABAR Collaboration, Phys. Rev. D 79, 112004 (2009)

  54. T. Bergfeld et al., (CLEO Collaboration), Phys. Lett. B 340, 194 (1994)

  55. A.F. Falk, T. Mehen, Phys. Rev. D 53, 231 (1996)

    Article  ADS  Google Scholar 

  56. K. Abe et al., (Belle Collaboration), Phys. Rev. D 69, 112002 (2004)

  57. S. Godfrey, Phys. Rev. D 72, 054029 (2005)

    Article  ADS  Google Scholar 

  58. M. Shah, A. Parmar, P.C. Vinodkumar, Phys. Rev. D 86, 034015 (2012)

    Article  ADS  Google Scholar 

  59. P.D. Collins, An Introduction to Regge Theory and High Energy Physics (Cambridge University Press, Cambridge, 1977)

    Book  Google Scholar 

  60. S. Godfrey, J. Napolitano, Rev. Mod. Phys. D 66, 1411 (1999)

    Article  ADS  Google Scholar 

  61. P. del Amo Sanchez et al., Phys. Rev. D 82, 111101 (2010)

  62. X.-H. Guo, K.-W. Wei, X.-H. Wu, Phys. Rev. D 78, 056005 (2008)

    Article  ADS  Google Scholar 

  63. A. Zhang, Phys. Rev. D 72, 017902 (2005)

    Article  ADS  Google Scholar 

  64. D.-M. Li, B. Ma, Y.-X. Li, Q.-K. Yao, H. Yu, Eur. Phys. J C 37, 323 (2004)

    Article  ADS  Google Scholar 

  65. M.M. Brisudova, L. Burakovsky, T. Goldman, Phys. Rev. D 61, 054013 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the author Mr. Keval Gandhi inspired by the work of Prof. A. V. Manohar, Prof. M. B. Wise, Prof. M. Neubert, Prof. A. F. Falk, Prof. M. E. Luke, Prof. R. Casalbuoni, Prof. S. Campanella, Prof. P. Colangelo, Prof. F. De Fazio and Prof. Z.-G. Wang on HQET and would like to thank them for their valuable contributions to this field. Special thanks to Prof. T. Matsuki for his valuable suggestion to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Kumar Rai.

Additional information

Communicated by Eulogio Oset

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandhi, K., Rai, A.K. Strong decay analysis of excited nonstrange charmed mesons: implications for spectroscopy. Eur. Phys. J. A 57, 23 (2021). https://doi.org/10.1140/epja/s10050-020-00332-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00332-4

Navigation