Skip to main content
Log in

Ultraviolet suppression and nonlocality in optical model potentials for nucleon-nucleus scattering

  • Regular Article – Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We investigate the role of high momentum components of optical model potentials for nucleon-nucleus scattering and its incidence on their nonlocal structure in coordinate space. The study covers closed-shell nuclei with mass number in the range \(4 \le A \le 208\), for nucleon energies from tens of MeV up to 1 GeV. To this purpose microscopic optical potentials were calculated using density-dependent off-shell g matrices in Brueckner-Hartree-Fock approximation and based on Argonne \(v_{18}\) as well as chiral 2N force up to next-to-next-to-next-to-leading order. We confirm that the gradual suppression of high-momentum contributions of the optical potential results in quite different coordinate-space counterparts, all of them accounting for the same scattering observables. We infer a minimum cutoff momentum Q, a function of the target mass number and energy of the process, that filters out irrelevant ultraviolet components of the potential. We find that when ultraviolet suppression is applied to Perey-Buck nonlocal potential or local Woods-Saxon potentials, they result with similar nonlocal structure to those obtained from microscopic models in momentum space. We examine the transversal nonlocality, quantity that makes comparable the intrinsic nonlocality of any potential regardless of its representation. We conclude that meaningful comparisons of nonlocal features of alternative potential models require the suppression of their ultraviolet components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The work presented here is theoretical and all the required formulas are given in the article.]

References

  1. F. Perey, B. Buck, A non-local potential model for the scattering of neutrons by nuclei. Nucl. Phys. 32, 353 (1962)

    Article  Google Scholar 

  2. M.C. Atkinson, W.H. Dickhoff, M. Piarulli, A. Rios, R.B. Wiringa, Reexamining the relation between the binding energy of finite nuclei and the equation of state of infinite nuclear matter. Phys. Rev. C 102, 044333 (2020). https://doi.org/10.1103/PhysRevC.102.044333

    Article  ADS  Google Scholar 

  3. C.D. Pruitt, R.J. Charity, L.G. Sobotka, J.M. Elson, D.E.M. Hoff, K.W. Brown, M.C. Atkinson, W.H. Dickhoff, H.Y. Lee, M. Devlin, N. Fotiades, S. Mosby, Isotopically resolved neutron total cross sections at intermediate energies. Phys. Rev. C 102, 034601 (2020). https://doi.org/10.1103/PhysRevC.102.034601

    Article  ADS  Google Scholar 

  4. J.E. Perez Velasquez, N.G. Kelkar, N.J. Upadhyay, Assessment of nonlocal nuclear potentials in \(\alpha \) decay. Phys. Rev. C 99, 024308 (2019). https://doi.org/10.1103/PhysRevC.99.024308

    Article  ADS  Google Scholar 

  5. Y. Tian, D.Y. Pang, Z.-Y. Ma, Effects of nonlocality of nuclear potentials on direct capture reactions. Phys. Rev. C 97, 064615 (2018). https://doi.org/10.1103/PhysRevC.97.064615

    Article  ADS  Google Scholar 

  6. H.F. Arellano, G. Blanchon, Irreducible nonlocality of optical model potentials based on realistic nn interactions. Phys. Rev. C 98, 054616 (2018). https://doi.org/10.1103/PhysRevC.98.054616

    Article  ADS  Google Scholar 

  7. A. Koning, J. Delaroche, Local and global nucleon optical models from 1 keV to 200 MeV. Nucl. Phys. A 713(3), 231–310 (2003). https://doi.org/10.1016/S0375-9474(02)01321-0

    Article  ADS  Google Scholar 

  8. Y. Tian, D.-Y. Pang, Z.-Y. Ma, Systematic nonlocal optical model potential for nucleons. Int. J. Mod. Phys. E 24(01), 1550006 (2015). https://doi.org/10.1142/S0218301315500068

    Article  ADS  Google Scholar 

  9. F.A. Brieva, J.R. Rook, Nucleon—nucleus optical model potential. Nucl. Phys. A 291, 317 (1977)

    Article  ADS  Google Scholar 

  10. J.P. Jeukenne, A. Lejeune, C. Mahaux, Many-body theory of nuclear matter. Phys. Rep. 25(2), 83 (1976). https://doi.org/10.1016/0370-1573(76)90017-X

    Article  ADS  Google Scholar 

  11. H.V. von Geramb, The Interaction Between Medium Energy Nucleons in Nuclei (American Institute of Physics, New York, 1983)

    Google Scholar 

  12. K. Amos, P.J. Dortmans, H.V. von Geramb, S. Karataglidis, J. Raynal, Advances in Nuclear Physics, vol. 25 (Springer, New York, 2000)

    Google Scholar 

  13. J. Raynal, Computer code DWBA98, Tech. Rep. 1209/05, NEA (1998)

  14. A. Picklesimer, P.C. Tandy, R.M. Thaler, D.H. Wolfe, Momentum space approach to microscopic effects in elastic proton scattering. Phys. Rev. C 30, 1861–1879 (1984). https://doi.org/10.1103/PhysRevC.30.1861

    Article  ADS  Google Scholar 

  15. W.C.L. Ray, G.W. Hoffmann, Nonrelativistic and relativistic descriptions of proton-nucleus scattering. Phys. Rep. 212, 223 (1992). https://doi.org/10.1016/0370-1573(92)90156-T

    Article  ADS  Google Scholar 

  16. H.F. Arellano, F.A. Brieva, W.G. Love, Full-folding-model description of elastic scattering at intermediate energies. Phys. Rev. Lett. 63, 605–608 (1989). https://doi.org/10.1103/PhysRevLett.63.605

    Article  ADS  Google Scholar 

  17. H.F. Arellano, F.A. Brieva, W.G. Love, Nonrelativistic full-folding model of nucleon elastic scattering at intermediate energies. Phys. Rev. C 41, 2188–2201 (1990). https://doi.org/10.1103/PhysRevC.41.2188

    Article  ADS  Google Scholar 

  18. C. Elster, T. Cheon, E.F. Redish, P.C. Tandy, Full-folding optical potentials in elastic proton-nucleus scattering. Phys. Rev. C 41, 814–827 (1990). https://doi.org/10.1103/PhysRevC.41.814

    Article  ADS  Google Scholar 

  19. R. Crespo, R.C. Johnson, J.A. Tostevin, Full folding calculations for proton–nucleus elastic scattering at intermediate energies. Phys. Rev. C 41, 2257–2262 (1990). https://doi.org/10.1103/PhysRevC.41.2257

    Article  ADS  Google Scholar 

  20. M. Vorabbi, P. Finelli, C. Giusti, Theoretical optical potential derived from nucleon–nucleon chiral potentials. Phys. Rev. C 93, 034619 (2016). https://doi.org/10.1103/PhysRevC.93.034619

    Article  ADS  Google Scholar 

  21. H.F. Arellano, F.A. Brieva, W.G. Love, In-medium full-folding optical model for nucleon-nucleus elastic scattering. Phys. Rev. C 52, 301–315 (1995). https://doi.org/10.1103/PhysRevC.52.301

    Article  ADS  Google Scholar 

  22. H.F. Arellano, H.V. von Geramb, Extension of the full-folding optical model for nucleon–nucleus scattering with applications up to 1.5 gev. Phys. Rev. C 66, 024602 (2002). https://doi.org/10.1103/PhysRevC.66.024602

    Article  ADS  Google Scholar 

  23. F.J. Aguayo, H.F. Arellano, Surface-peaked medium effects in the interaction of nucleons with finite nuclei. Phys. Rev. C 78, 014608 (2008). https://doi.org/10.1103/PhysRevC.78.014608

    Article  ADS  Google Scholar 

  24. J.S. Bell, E.J. Squires, A formal optical model. Phys. Rev. Lett. 3, 96–97 (1959). https://doi.org/10.1103/PhysRevLett.3.96

    Article  ADS  Google Scholar 

  25. J. Rotureau, P. Danielewicz, G. Hagen, F.M. Nunes, T. Papenbrock, Optical potential from first principles. Phys. Rev. C 95, 024315 (2017). https://doi.org/10.1103/PhysRevC.95.024315

    Article  ADS  MATH  Google Scholar 

  26. H.F. Arellano, G. Blanchon, SWANLOP: scattering waves off nonlocal optical potentials in the presence of Coulomb interactions. Comput. Phys. Commun. 259, 107543 (2021). https://doi.org/10.1016/j.cpc.2020.107543

    Article  MathSciNet  Google Scholar 

  27. S.P. Weppner, C. Elster, D. Hüber, Off-shell structures of nucleon–nucleon \(t\) matrices and their influence on nucleon–nucleus elastic scattering observables. Phys. Rev. C 57, 1378–1385 (1998). https://doi.org/10.1103/PhysRevC.57.1378

    Article  ADS  Google Scholar 

  28. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Accurate nucleon–nucleon potential with charge-independence breaking. Phys. Rev. C 51(1), 38–51 (1995). https://doi.org/10.1103/PhysRevC.51.38

    Article  ADS  Google Scholar 

  29. D.R. Entem, R. Machleidt, Accurate charge-dependent nucleon–nucleon potential at fourth order of chiral perturbation theory. Phys. Rev. C 68, 041001 (2003). https://doi.org/10.1103/PhysRevC.68.041001

    Article  ADS  Google Scholar 

  30. H.F. Arellano, J.-P. Delaroche, Low-density homogeneous symmetric nuclear matter: disclosing dinucleons in coexisting phases. Eur. Phys. J. A 51(1), 7 (2015). https://doi.org/10.1140/epja/i2015-15007-2

    Article  ADS  Google Scholar 

  31. F. Isaule, H.F. Arellano, A. Rios, Di-neutrons in neutron matter within a Brueckner–Hartree–Fock approach. Phys. Rev. C 94, 034004 (2016). https://doi.org/10.1103/PhysRevC.94.034004

    Article  ADS  Google Scholar 

  32. H.F. Arellano, F. Isaule, A. Rios, Di-nucleon structures in homogeneous nuclear matter based on two- and three-nucleon interactions. Eur. Phys. J. A 52(9), 299 (2016). https://doi.org/10.1140/epja/i2016-16299-2

    Article  ADS  Google Scholar 

  33. H.F. Arellano, G. Blanchon, Exact scattering waves off nonlocal potentials under Coulomb interaction within Schrd̈inger’s integro-differential equation. Phys. Lett. B 789, 256–261 (2019). https://doi.org/10.1016/j.physletb.2018.12.004

    Article  ADS  MATH  Google Scholar 

  34. G. Blanchon, M. Dupuis, H.F. Arellano, R.N. Bernard, B. Morillon, SIDES: Nucleon–nucleus elastic scattering code for nonlocal potential. Comput. Phys. Commun. 254, 107340 (2020). https://doi.org/10.1016/j.cpc.2020.107340

    Article  MathSciNet  Google Scholar 

  35. A. Auce, A. Ingemarsson, R. Johansson, M. Lantz, G. Tibell, R.F. Carlson, M.J. Shachno, A.A. Cowley, G.C. Hillhouse, N.M. Jacobs, J.A. Stander, J.J. Zyl, S.V. Förtsch, J.J. Lawrie, F.D. Smit, G.F. Steyn, Reaction cross sections for protons on \(^{12}\text{ C },^{40}\text{ Ca },^{90}\text{ Zr }\), and \(^{208}\text{ Pb }\) at energies between 80 and 180 MeV. Phys. Rev. C 71, 064606 (2005). https://doi.org/10.1103/PhysRevC.71.064606

    Article  ADS  Google Scholar 

  36. R. Carlson, Proton–nucleus total reaction cross sections and total cross sections up to 1 GeV. Data Nucl. Data Tables 63, 93–116 (1996). https://doi.org/10.1006/adnd.1996.0010

    Article  ADS  Google Scholar 

  37. V. Lapoux, Private communication

  38. F.F. Chen, C.P. Leavitt, A.M. Shapiro, Attenuation cross sections for 860-mev protons. Phys. Rev. 99, 857–871 (1955). https://doi.org/10.1103/PhysRev.99.857

    Article  ADS  Google Scholar 

  39. V. Hnizdo, O. Karban, J. Lowe, G.W. Greenlees, W. Makofske, Elastic scattering of 30.3-MeV polarized protons from \(^{40}\text{ Ca }\), \(^{56}\text{ Fe }\), and \(^{59}\text{ Co }\). Phys. Rev. C 3, 1560–1565 (1971). https://doi.org/10.1103/PhysRevC.3.1560

    Article  ADS  Google Scholar 

  40. S. Bogner, R. Furnstahl, A. Schwenk, From low-momentum interactions to nuclear structure. Prog. Part. Nucl. Phys. 65(1), 94–147 (2010). https://doi.org/10.1016/j.ppnp.2010.03.001

    Article  ADS  Google Scholar 

  41. H.F. Arellano, E. Bauge, 7D-folding integral in a density-dependent microscopic optical model potential for nucleon-nucleus scattering. Phys. Rev. C 84, 034606 (2011). https://doi.org/10.1103/PhysRevC.84.034606

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. F. Arellano.

Additional information

Communicated by Nicolas Alamanos.

Multipoles of Gaussian form factor

Multipoles of Gaussian form factor

We evaluate

$$\begin{aligned} w_l(b)={b}\int _{-1}^{1} P_l(u)e^{bu}\,du, \end{aligned}$$
(A.1)

with l positive integer. For low \(l\le 3\) the evaluation of this integral is direct. For higher values they become tedious but straightforward. In such cases we use symbolic manipulation software to evaluate explicitly the cases \(l\le 5\), obtaining

$$\begin{aligned} w_0(b)/2&=\sinh b \end{aligned}$$
(A.2a)
$$\begin{aligned} -{b}\, w_1(b)/2&=\sinh b + b\cosh \,b \end{aligned}$$
(A.2b)
$$\begin{aligned} {b^2} w_2(b)/2&= (3+b^2)\sinh \,b - 3b\cosh \,b \end{aligned}$$
(A.2c)
$$\begin{aligned} -b^3 w_3(b)/2&= (15+b^2)\sinh b \nonumber \\&-(15\,b+2\,b^3)\cosh b \end{aligned}$$
(A.2d)
$$\begin{aligned} b^4 w_4(b)/2&= (105+45\, b^2+b^4)\sinh b \nonumber \\&- (105\,b+10\,b^3)\cosh b \end{aligned}$$
(A.2e)
$$\begin{aligned} -b^5 w_5(b)/2&= (945+420\,b^2+b^4)\sinh b \nonumber \\&-(945\,b+105\,b^3+b^5)\cosh b. \end{aligned}$$
(A.2f)

Factorization by exponentials yields

$$\begin{aligned} w_0(b)&=e^{b} - e^{-b} \end{aligned}$$
(A.3a)
$$\begin{aligned} w_1(b)&=e^{b} \left( 1 - \frac{1}{b} \right) - e^{-b} \left( 1 + \frac{1}{b} \right) \end{aligned}$$
(A.3b)
$$\begin{aligned} w_2(b)&=e^{b} \left( 1 - \frac{3}{b} + \frac{3}{b^2} \right) - e^{-b} \left( 1 + \frac{3}{b} + \frac{3}{b^2} \right) \end{aligned}$$
(A.3c)
$$\begin{aligned} w_3(b)&=e^{b} \left( 1 - \frac{6}{b} + \frac{15}{b^2} - \frac{15}{b^3}\right) \nonumber \\&- e^{-b}\left( 1 + \frac{6}{b} + \frac{15}{b^2} + \frac{15}{b^3}\right) \end{aligned}$$
(A.3d)
$$\begin{aligned} w_4(b)&=e^{b} \left( 1 - \frac{10}{b} + \frac{45}{b^2} - \frac{105}{b^3} + \frac{105}{b^4}\right) \nonumber \\&- e^{-b}\left( 1 + \frac{10}{b} + \frac{45}{b^2} + \frac{105}{b^3} + \frac{105}{b^4}\right) \end{aligned}$$
(A.3e)
$$\begin{aligned} w_5(b)&=e^{b} \left( 1 - \frac{15}{b} + \frac{105}{b^2} - \frac{420}{b^3} + \frac{945}{b^4}- \frac{945}{b^5}\right) \nonumber \\&- e^{-b} \left( 1 + \frac{15}{b} + \frac{105}{b^2} + \frac{420}{b^3} + \frac{945}{b^4}+ \frac{945}{b^5}\right) . \end{aligned}$$
(A.3f)

Here we recognize Bessel polynomials \({y}_n(x)\) given by

$$\begin{aligned} {y}_0(x)&= 1 \end{aligned}$$
(A.4a)
$$\begin{aligned} {y}_1(x)&= x+1 \end{aligned}$$
(A.4b)
$$\begin{aligned} {y}_2(x)&= 3x^2+3x+1 \end{aligned}$$
(A.4c)
$$\begin{aligned} {y}_3(x)&= 15x^3+15x^2+6x+1 \end{aligned}$$
(A.4d)
$$\begin{aligned} {y}_4(x)&= 105x^4+105x^3+45x^2+10x+1 \end{aligned}$$
(A.4e)
$$\begin{aligned} {y}_5(x)&= 945x^5+945x^4+420x^3+105x^2+15x+1 \end{aligned}$$
(A.4f)

Thus,

$$\begin{aligned} w_l(b)= e^{b}{y}_l \left( \textstyle {\frac{-1\,}{b}} \right) -e^{-b}{y}_l \left( \textstyle {\frac{\,1\,}{\,b\,}} \right) . \end{aligned}$$
(A.5)

We note that Bessel polynomials are related to modified Bessel functions of the second kind through

$$\begin{aligned} y_n(x) = \sqrt{\frac{2}{\pi x}} e^{1/x} K_{n+\nicefrac {1}{2}}(1/x). \end{aligned}$$
(A.6)

Furthermore, they satisfy the recursion relation

$$\begin{aligned} y_{n+1}(x) = (2n+3)x\,y_n(x) + y_{n-1}(x). \end{aligned}$$
(A.7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arellano, H.F., Blanchon, G. Ultraviolet suppression and nonlocality in optical model potentials for nucleon-nucleus scattering. Eur. Phys. J. A 57, 27 (2021). https://doi.org/10.1140/epja/s10050-020-00328-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00328-0

Navigation