Skip to main content

Neutron radiative capture cross section for sodium with covariance analysis

Abstract

The neutron radiative capture cross sections measurement has been carried out for the \(^{23}\)Na nucleus in the neutron energy region from 0.6 to 3.2 MeV using the neutron activation technique followed by off-line \(\gamma \)-ray spectrometry. The measurement was made relative to the \(^{115}\)In(n,n\(\prime \) \(\gamma \))\(^{115}\hbox {In}^{m}\) reference monitor reaction cross section. The neutrons were produced via the \(^{7}\)Li(p,n)\(^{7}\)Be reaction. Detailed uncertainty propagation has been performed using the covariance analysis, and the measured cross sections are being reported with their uncertainties, covariance, and correlation matrix. The necessary corrections have been made for the low background neutron energy contribution, \(\gamma \)-ray true coincidence summing, and self-attenuation process. The obtained neutron spectrum averaged cross sections of \(^{23}\)Na(n,\(\gamma \))\(^{24}\)Na are discussed and compared with the existing cross sections data retrieved from the EXFOR database. EMPIRE-3.2 and TALYS-1.9 calculations were performed in order to determine the radiative capture cross section in this energy region. The present results are also compared with the evaluated nuclear data from ENDF/B-VIII.0, TENDL-2019, IRDFF-1.05, JENDL-4.0, and JEFF-3.3. The obtained cross section results are in good agreement with existing experimental data, evaluated libraries, and reaction models for the highest energy points (2.11 and 3.13 MeV), while the lowest-energy point at 0.61 MeV underestimates them.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the data generated during this study are contained in this article.]

References

  1. 1.

    C. Wang et al., Progr. Nucl. Energy 68, 142 (2013)

    Google Scholar 

  2. 2.

    F. Arbeiter et al., Nucl. Mater. Energy 9, 59 (2016)

    Google Scholar 

  3. 3.

    A. Lbarra et al., Fusion Sci. Technol. 66, 252 (2014)

    Google Scholar 

  4. 4.

    T.B. Ryves, D.R. Perkins, J. Nucl. Energy 24, 419 (1970)

    ADS  Google Scholar 

  5. 5.

    D.S. Kappe, A self-consistent set of thermal neutron activation cross sections dissertation abstracts B 27, 919 (1966)

  6. 6.

    http://en.wikipedia.org/wiki/Isotopes of sodium

  7. 7.

    CL Liu, The research of estimating neutron dose by the activation of sodium in human blood (Thesis for Master Degree). Chengdu University of Technology (2011) (In Chinese)

  8. 8.

    M. Chun-Wang et al., Chin. Phys. C 38, 104101 (2014)

    ADS  Google Scholar 

  9. 9.

    L.A. Bernstein et al., Ann. Rev. Nucl. Part. Sci. 69, 109 (2019)

    ADS  Google Scholar 

  10. 10.

    E.M. Zsolnay, R. Capote, H. K. Nolthenius, A. Trkov, International Atomic Energy Agency Technical Report No. INDC(NDS)-0616 (2012)

  11. 11.

    N. Otuka et al., Radiat. Phys. Chem. 140, 502 (2017)

    ADS  Google Scholar 

  12. 12.

    W. Mannhart, International Atomic Energy Agency Report No. INDC (NDS)-0588 (Rev.) (2013)

  13. 13.

    D.L. Smith, Nuclear instruments and methods in physics research a: accelerators. Spectrom. Detect. Assoc. Equip. 257, 365 (1987)

    Google Scholar 

  14. 14.

    G. Rimpault, W. Khamakhem, R. Jacqmin, J.C. Sublet, J. Tommasi, Neutron Measurements. Eval. Appl. 16, 119 (2007)

    Google Scholar 

  15. 15.

    N. Otuka et al., Nucl. Data Sheets 120, 272 (2014)

    ADS  Google Scholar 

  16. 16.

    EXFOR database, https://www-nds.iaea.org/exfor (Data retrieved on April 2020)

  17. 17.

    D.A. Brown et al., Nucl. Data Sheets 148, 1 (2018)

    ADS  Google Scholar 

  18. 18.

    A.J. Koning, D. Rochman, Nucl. Data Sheets 113, 2841 (2012)

    ADS  Google Scholar 

  19. 19.

    K. Shibata et al., J. Nucl. Sci. Technol. 48, 1 (2011)

    Google Scholar 

  20. 20.

    A.J.M. Plompen et al., Eur. Phys. J. A 56, 1 (2020)

    Google Scholar 

  21. 21.

    JEFF 3.3, https://www.oecd-nea.org/dbdata/jeff/jeff33/. Accessed April 2020

  22. 22.

    M. Herman et al., EMPIRE-3.2 Malta modular system for nuclear reaction calculations and nuclear data evaluation Users Manual, No. BNL [101378-2013]. Brookhaven National Laboratory (BNL) National Nuclear Data Center, (2013)

  23. 23.

    A.J. Koning, S. Hilaire, M.C. Duijvestijn, TALYS-1.0, in Proceedings of the International Conference on Nuclear Data for Science and Technology, April 22–27, 2007, Nice, France, editors O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, and S. Leray, (EDP Sciences, Les Ulis, France, 2008), p. 211

  24. 24.

    D. Rochman et al., Phys. Lett. B 764, 109 (2017)

  25. 25.

    P. Singh et al., Pramana 59, 739 (2002)

    ADS  Google Scholar 

  26. 26.

    C.H. Poppe et al., Phys. Rev. C 14, 438 (1976)

    ADS  Google Scholar 

  27. 27.

    H. Lisken, A. Paulsen, At. Data Nucl. Data Tables 15, 57 (1975)

    ADS  Google Scholar 

  28. 28.

    R. Pachuau et al., Nucl. Sci. Eng. 187, 70 (2017)

  29. 29.

    R. Pachuau et al., EPJ Web Conf. 146, 12016 (2017)

    Google Scholar 

  30. 30.

    J.W. Meadows, D.L. Smith, Neutrons from Proton Bombardment of Natural Lithium (Argone National Laboratory, Lemont, 1972)

    Google Scholar 

  31. 31.

    A.K. Bakshi et al., Nuclear instruments and methods in physics research section a: accelerators. Spectrom. Detect. Assoc. Equip. 949, 162926 (2020)

    Google Scholar 

  32. 32.

    L.R.M. Punte et al., Phys. Rev. C 95, 024619 (2017)

    ADS  Google Scholar 

  33. 33.

    B. Lalremruata et al., International Atomic Energy Agency Report No. INDC(IND)-0049 (2017)

  34. 34.

    R.B. Firestone, Nucl. Data Sheet 108, 2319 (2007)

    ADS  Google Scholar 

  35. 35.

    J. Blachot, Nucl. Data Sheet 113, 2391 (2012)

    ADS  Google Scholar 

  36. 36.

    M.J. Martin, Nucl. Data Sheet 114, 1497 (2013)

    ADS  Google Scholar 

  37. 37.

    T. Vidmar, Nucl. Instrum. Methods A 550, 603 (2005)

    ADS  Google Scholar 

  38. 38.

    T. Vidmar, G. Kanisch, G. Vidmar, Appl. Radiat. Isot. 908, 69 (2011)

    Google Scholar 

  39. 39.

    R. Pachuau et al., Nucl. Phys. A 992, 121613 (2019)

    Google Scholar 

  40. 40.

    S. Badwar et al., Eur. Phys. J. A 54, 168 (2018)

    ADS  Google Scholar 

  41. 41.

    D.W. Millsap, S. Landsberger, Appl. Radiat. Isot. 97, 2 (2015)

    Google Scholar 

  42. 42.

    E. Robu, C. Giovani, Rom. Rep. Phys. 61, 295 (2009)

    Google Scholar 

  43. 43.

    K.R. Jackman, Ph.D. dissertation submitted to the University of Texas at Austin, August (2007)

  44. 44.

    R. Nowotny, XMuDat: photon attenuation data on PC, IAEA Report No. IAEA-NDS 195 (1998)

  45. 45.

    S. Parashari, S. Mukherjee, S.V. Suryanarayana, B.K. Nayak, Rajnikant Makwana, N.L. Singh, H. Naik, Phys. Rev. C 99, 044602 (2019)

    ADS  Google Scholar 

  46. 46.

    D. Neudecker et al., Covariance/Sensitivity/Uncertainty/Validation and its Impact on Application. No. LA-UR-20-22535. Los Alamos National Lab.(LANL), Los Alamos, NM (United States, 2020)

  47. 47.

    R. Pachuau et al., Phys. Rev. C 97, 064617 (2018)

    ADS  Google Scholar 

  48. 48.

    A. Gandhi et al., Indian J. Phys. 93, 1345 (2019)

    ADS  Google Scholar 

  49. 49.

    A. Gandhi et al., J. Radioanal. Nucl. Chem. 322, 89 (2019)

    Google Scholar 

  50. 50.

    A. Iljinov et al., Nucl. Phys. A 543, 517 (1992)

    ADS  Google Scholar 

  51. 51.

    A.J. Koning, J.P. Delaroche, Nucl. Phys. A 713, 231 (2003)

    ADS  Google Scholar 

  52. 52.

    R. Capote et al., Nucl. Data Sheets 110, 3107 (2009)

    ADS  Google Scholar 

  53. 53.

    W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952)

    ADS  Google Scholar 

  54. 54.

    H.M. Hofmann et al., Ann. Phys. 90, 403 (1975)

    ADS  Google Scholar 

  55. 55.

    D.M. Brink, Ph.D. thesis, Oxford University (1955)

  56. 56.

    P.A. Moldauer, Phys. Rev. C 14, 764 (1976)

    ADS  Google Scholar 

  57. 57.

    P.A. Moldauer, Nucl. Phys. A 344, 185 (1980)

    ADS  Google Scholar 

  58. 58.

    J. Kopecky, M. Uhl, Phys. Rev. C 41, 1941 (1990)

    ADS  Google Scholar 

  59. 59.

    M. Uhl, J. Kopecky, INDC(NDS)-335 and ECN Report, ECN-RX–94-099 (1995) p. 157

  60. 60.

    W. Dilg, W. Schantl, H. Vonach, M. Uhl, Nucl. Phys. A 217, 269 (1973)

    ADS  Google Scholar 

  61. 61.

    A. Mengoni, Y. Nakajima, J. Nucl. Sci. Technol. 31, 151 (1994)

    Google Scholar 

  62. 62.

    H.O. Menlove et al., Phys. Rev. 163, 1299 (1967)

    ADS  Google Scholar 

  63. 63.

    A.I. Leipunskiy et al., Proc. of Second UN Conf. on the Peaceful Uses of Atomic Energy, Geneva, 1–13 September 1958, vol. 15, p. 50–59 (P/2219)

  64. 64.

    S.J. Bame Jr., R.L. Cubitt, Phys. Rev. 113, 256 (1959)

    ADS  Google Scholar 

  65. 65.

    F.H. Abernathy, H. Reese Jr., Report CF-53-8-22, ORNL. EXFOR Id: 11448.002 (1953)

  66. 66.

    D.J. Hughes, R.B. Schwartz, Neutron Cross Sections (Brookhaven National Laboratory, New York, 1958)

    Google Scholar 

Download references

Acknowledgements

One of the authors (A.K.) thanks to the Board of Research in Nuclear Sciences, Department of Atomic Energy, Government of India [Sanction No. 36(6)/14/23/2016-BRNS], Department of Science and Technology, Ministry of Science and Technology, Government of India [Sanction No. INT/RUS/RFBR/P-250], and Science and Engineering Research Board, Government of India [Sanction No. CRG/2019/000360], for the financial support for this work. The authors also gratefully acknowledge the excellent cooperation of the FOTIA facility operators for the smooth operation of the accelerator throughout the experiment.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Gandhi.

Additional information

Communicated by Alessia Di Pietro

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gandhi, A., Sharma, A., Pachuau, R. et al. Neutron radiative capture cross section for sodium with covariance analysis. Eur. Phys. J. A 57, 1 (2021). https://doi.org/10.1140/epja/s10050-020-00322-6

Download citation