Skip to main content
Log in

Simulations using the pulse shape comparison scanning technique on an AGATA segmented HPGe gamma-ray detector

  • Special Article – New Tools and Techniques
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Monte Carlo simulations are used to test the Pulse Shape Comparison Scanning (PSCS) technique implemented at the IPHC scanning table. The technique allows the full volume characterization of a given position sensitive detector resulting in the construction of the corresponding database of pulses. The tests, performed on a high purity germanium (HPGe) detector unit of the AGATA array, aim to quantify the accuracy of the technique and validate it through the evaluation of parameters extracted from the resulting database. The simulations use a combination of tools such as Geant4, SIMION and the Agata Detector Library (ADL). Quality parameters are extracted at various gamma-ray energies and the impact of the input statistics on the parameters is also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Access to the data may be given upon request.]

References

  1. S. Akkoyun et al., AGATA - Advanced Gamma tracking array. Nucl. Instruments Methods Phys. Res. Sect. A 668, 26–58 (2012)

    Article  ADS  Google Scholar 

  2. A. Korichi, T. Lauritsen, Tracking gamma rays in highly segmented HPGe detectors: a review of AGATA and GRETINA. Euro. Phys. J. A 55(7), 121–151 (2019)

    Article  ADS  Google Scholar 

  3. A. Lopez-Martens et al., Gamma-ray tracking algorithms: a comparison. Nucl. Instruments Methods Phys. Res. Sect. A 533(3), 454–466 (2004)

    Article  ADS  Google Scholar 

  4. G. Suliman, D. Bucurescu, Fuzzy clustering algorithm for gamma ray tracking in segmented detectors. Romanian Reports in Physics 62, 27–36 (2010)

    Google Scholar 

  5. F. Didierjean et al., The deterministic annealing filter: a new clustering method for gamma-ray tracking algorithms. Nucl. Instruments Methods Phys. Res. Sect. 615, 188–200 (2010)

    Article  ADS  Google Scholar 

  6. S. Tashenov, J. Gerl, Tango - new tracking algorithm for gamma-rays. Nuclear Instruments Methods Phys. Res. Sect. A 622, 592–601 (2010)

    Article  ADS  Google Scholar 

  7. F.A. Beck, EUROBALL: Large gamma ray spectrometers through european collaborations. Progress Particle Nucl. Phys. 28, 443–461 (1992)

    Article  ADS  Google Scholar 

  8. J. Simpson, The EUROBALL spectrometer. Zeitschrift für Physik A Hadrons Nucl. 358(2), 139–143 (1997)

    Article  ADS  Google Scholar 

  9. C.W. Beausang et al., Measurements on prototype Ge and BGO detectors for the EUROGAM array. Nucl. Instruments Methods Phys. Res. Sect. A 313(1), 37–49 (1992)

    Article  ADS  Google Scholar 

  10. R. Venturelli, D. Bazzacco, Adaptive grid search as pulse shape analysis algorithm for gamma-tracking and results. LNL Annual Report, page 220, (2004)

  11. L. Mihailescu, Principles and Methods for gamma ray tracking with large volume Germanium Detectors. Ph.D. thesis, University of Bonn, (2000)

  12. L. Mihailescu et al., The influence of anisotropic electron drift velocity on the signal shapes of closed-end HPGe detectors. Nucl. Instrum. Meth. A 447, 350–360 (2000)

    Article  ADS  Google Scholar 

  13. P. Medina, et al. A simple method for the characterization of HPGe detectors. Conference Record - IEEE Instrumentation and Measurement Technology Conference, 3:1828 – 1832 Vol.3, (2004)

  14. M. Schlarb et al., Pulse shape analysis for gamma-ray tracking (Part I): pulse shape simulation with JASS. Euro. Phys. J. A 47(10), 132–155 (2011)

    Article  ADS  Google Scholar 

  15. I. Mateu et al., Simulation of the charge collection and signal response of a HPGe double sided strip detector using MGS. Nucl. Instruments Methods Phys. Res. A 735, 574–583 (2014)

    Article  ADS  Google Scholar 

  16. B. Bruyneel et al., Pulse shape analysis and position determination in segmented HPGe detectors: the AGATA detector library. Euro. Phys. J. A 52(3), 70–80 (2016)

    Article  ADS  Google Scholar 

  17. F. Recchia et al., Position resolution of the prototype AGATA triple-cluster detector from an in-beam experiment. Nucl. Instruments Methods Phys. Res. Sect. A 604(3), 555–562 (2009)

    Article  ADS  Google Scholar 

  18. P.-A. Soederstroem et al., Interaction position resolution simulations and in-beam measurements of the AGATA HPGe detectors. Nucl. Instruments Methods Phys. Res. Sect. A 638(1), 96–109 (2011)

    Article  ADS  Google Scholar 

  19. M. Dimmock et al., Validation of pulse shape simulations for an AGATA prototype detector. Nucl. Sci. IEEE Trans. 56, 2415–2425 (2009)

    Article  ADS  Google Scholar 

  20. T.M.H. Ha et al., New setup for the characterisation of the AGATA detectors. Nucl. Instruments Methods Phys. Res. Sect. A 697, 123–132 (2013)

    Article  ADS  Google Scholar 

  21. N. Goel, et al. Spatial calibration via imaging techniques of a novel scanning system for the pulse shape characterisation of position sensitive HPGe detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 652(1):591–594, 2011. Symposium on Radiation Measurements and Applications (SORMA) XII (2010)

  22. A. Hernandez-Prieto et al., Study of accuracy in the position determination with SALSA, a gamma-scanning system for the characterization of segmented HPGe detectors. Nucl. Instruments Methods Phys. Res. Sect. A 823, 98–106 (2016)

    Article  ADS  Google Scholar 

  23. M.H. Sigward, et al. Pulse-Shape Comparison Scan of germanium detectors using the IPHC scanning table. To be published

  24. F.C.L. Crespi et al., A novel technique for the characterization of a HPGe detector response based on pulse shape comparison. Nucl. Instruments Methods Phys. Res. Sect. A 593(3), 440–447 (2008)

    Article  ADS  Google Scholar 

  25. B. De Canditiis, 3D characterization of multi-segmented HPGe detectors. Simulation and validation of the PSCS technique and its application for different energies with a\(^{152}Eu\)source. Ph.D. thesis, University of Strasbourg, (2020)

  26. J. Simpson, et al. AGATA Technical Design Report. Technical report, (2008)

  27. J. Eberth et al., Encapsulated Ge detectors: development and first tests. Nucl. Instruments Methods Phys. Res. Sect. A 369(1), 135–140 (1996)

    Article  ADS  Google Scholar 

  28. A. Pullia et al., An advanced preamplifier for highly segmented germanium detectors. IEEE Trans. Nucl. Sci. 53(5), 2869–2875 (2006)

    Article  ADS  Google Scholar 

  29. F. Zocca et al., A time-over-threshold technique for wide dynamic range gamma-ray spectroscopy with the AGATA detector. Nucl. Sci. IEEE Trans. 56, 2384–2391 (2009)

    Article  ADS  Google Scholar 

  30. G. Pascovici et al., Low noise, dual gain preamplifier with built in spectroscopic pulser for highly segmented high-purity germanium detectors. WSEAS Trans. Cir. Sys. 7(6), 470–481 (2008)

    Google Scholar 

  31. M. Ginsz. Characterization of high-purity, multi-segmented germanium detectors. Ph.D. thesis, University of Strasbourg, (2015). https://publication-theses.unistra.fr/public/theses_doctorat/2015/Ginsz_Michael_2015_ED182.pdf

  32. W. Shockley, Currents to conductors induced by a moving point charge. J. Appl. Phys. 9, 635–636 (1938)

    Article  ADS  Google Scholar 

  33. S. Ramo, Currents induced by electron motion. Proc. I.R.E. 27, 584–585 (1939)

    Article  Google Scholar 

  34. Zhong He, Review of the Shockley-Ramo theorem and its application in semiconductor gamma-ray detectors. Nucl. Instruments MethodsPhys. Res. Sect. A 463(1), 250–267 (2001)

    Article  ADS  Google Scholar 

  35. SIMION https://simion.com/

  36. S. Agostinelli et al., Geant4 - a simulation toolkit. Nucl. Instruments Methods Phys. Res. Sect. A 506(3), 250–303 (2003)

    Article  ADS  Google Scholar 

  37. AGAPRO section on the GSI forum https://forum.gsi.de/index.php?t=thread&frm_id=219&rid=0

  38. L. Lewandowski et al., Pulse-shape analysis and position resolution in highly segmented HPGe AGATA detectors. Euro. Phys. J. A 55(5), 81–93 (2019)

    Article  ADS  Google Scholar 

  39. B. De Canditiis, et al. To be published

Download references

Acknowledgements

This work was partially supported by the MIRION Technologies Canberra Company under the contract No 152251.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. De Canditiis.

Additional information

Communicated by Calin Alexandru Ur

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Canditiis, B., Duchêne, G. Simulations using the pulse shape comparison scanning technique on an AGATA segmented HPGe gamma-ray detector. Eur. Phys. J. A 56, 276 (2020). https://doi.org/10.1140/epja/s10050-020-00287-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00287-6

Navigation