Skip to main content

Photo-neutron cross-section of \({}^{{\mathrm {nat}}}{\mathrm {Dy}}\) in the bremsstrahlung end-point energies of 12, 14, 16, 65, and 75 MeV


The flux-weighted average cross-sections of \({}^{\mathrm {nat}}{\mathrm {Dy}}(\upgamma , {\mathrm {xn}}){}^{{159,157,155}}{\mathrm {Dy}}\) reactions were measured at the bremsstrahlung end-point energies of 12, 14, 16, 65 and 75 MeV with the activation and off-line \(\upgamma \)-ray spectrometric technique using the 20 MeV Electron Linac for beams with high Brilliance and low Emittance (ELBE) at Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany and the 100 MeV electron linac at the Pohang Accelerator Laboratory, Korea. The \({}^{\mathrm {nat}}{\mathrm {Dy}}(\upgamma , {\mathrm {xn}}){}^{{157,155}}{\mathrm {Dy}}\) reaction cross-sections as a function of photon energy were also calculated theoretically using TALYS 1.9 code. Then the flux-weighted average values at different end-point energies were obtained based on the theoretical values of mono-energetic photons. These values were compared with the flux-weighted values of present work and are found to be in general agreement. It was also found that the experimental and theoretical formation cross sections of \({}^{159}{\mathrm {Dy}}\), \({}^{157}{\mathrm {Dy}}\) and \({}^{155}{\mathrm {Dy}}\) from the \({}^{\mathrm {nat}}{\mathrm {Dy}}(\upgamma , {\mathrm {xn}})\) reactions increased from their respective threshold values to a certain energy where other reaction channels opened. After reaching a maximum value, the individual reaction cross-sections slowly decreased with the increase of the bremsstrahlung energy due to the initiation of other competing reactions at higher energy, which indicates the impact of the excitation energy. However, the production cross sections of \({}^{157}{\mathrm {Dy}}\) and \({}^{155}{\mathrm {Dy}}\) from the \({}^{\mathrm {nat}}{\mathrm {Dy}}(\upgamma , {\mathrm {xn}})\) reactions slightly increase in between and then decreased slowly with bremsstrahlung energy, which is due to the contributing reactions of higher mass isotopes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data used in this paper are deposited in the EXFOR data library and TENDL-2019 data library, and the data produced during this study will be deposited in the EXFOR data library.]


  1. 1.

    S.F. Mughabghab, M. Divadeenam, N.E. Holden, Neutron Resonance and Thermal Cross Sections, vol. 1 (Academic Press, New York, 1981)

    Google Scholar 

  2. 2.

    IAEA Hand book on photonuclear data for applications Cross- sections and spectra. IAEA-TECDOC-117.

  3. 3.

    Y.-O. Lee, Y. Han, J.-Y. Lee, J. Chang, J. Korean Nucl. Soc. 31, 529 (1999)

    Google Scholar 

  4. 4.

    T. Mukhopadhyay, D. Basu, Eur. Phys. J. A. 45, 121 (2010)

    ADS  Article  Google Scholar 

  5. 5.

    A. Nuttin, D. Heuer, A. Billebaud, R. Brissot, C. Le Brun, E. Liatard, J.M. Loiseaux, L. Mathieu, O. Meplan, E. Merle-Lucotte, H. Nifenecker, F. Perdu, S. David, Proc. Nucl. Energy 46, 77 (2005)

    Article  Google Scholar 

  6. 6.

    T.R. Allen, D.C. Crawford, Sci. Technol. Nucl. Install. Article ID 97486 (2007)

  7. 7.

    F. Carminati, R. Klapisch, J.P. Revol, J.A. Rubio, C. Rubia, CERN/AT/93-49(ET) (1993)

  8. 8.

    C. Rubia, J.A. Rubio, S. Buono, F. Carminati, N. Fietier, J. Galvez, C. Geles, Y. Kadi, R. Klapisch, P. Man-drilion, J.P. Revol, Ch. Roche, CERN/LHC/97-01(EET) (1997)

  9. 9.

    Accelerator Driven Systems: Energy Generation and Transmutation of Nuclear Waste, Status report, IAEA, Vienna, IAEA-TECDO-985 (1997)

  10. 10.

    C.D. Bowman, Annu. Rev. Nucl. Part. Sci. 48, 505 (1998)

    ADS  Article  Google Scholar 

  11. 11.

    S. Ganesan, Pramana 68, 257 (2007)

    ADS  Article  Google Scholar 

  12. 12.

    IAEA-EXFOR, Experimental Nuclear Reaction Data.

  13. 13.

    M. Mastromarco et al., Eur. Phys. J. A 55, 9 (2019)

    ADS  Article  Google Scholar 

  14. 14.

    S.G. Shin, Y.U. Kye, W. Namkung, M.H. Cho, Y-R. Kang, M.W. Lee, G.N. Kim, T.-I. Ro, J. E. Lee, T. Katabuchi and K. Terada, JPARC-April-27

  15. 15.

    A.J. Koning, S. Hilaire, S. Goriely, TALYS-1.9, A Nuclear Reaction Program, NRG-1755 ZG Petten, The Netherlands (2017). download-talys/

  16. 16.

    M. Erhard, A.R. Junghans, C. Nair, R. Schwengner, R. Beyer, J. Klug, K. Kosev, A. Wagner, Phys. Rev. C 81, 034319 (2010)

    ADS  Article  Google Scholar 

  17. 17.

    R. Schwengner, R. Beyer, F. Donau, E. Gosse, A. Hartmann, A.R. Junghans, S. Mallian, G. Rusev, K.D. Schilling, W. Schulze, A. Wagner, Nuc. Inst. Methods Phys. A 555, 211 (2005)

    ADS  Article  Google Scholar 

  18. 18.

    H. Naik, G.N. Kim, R. Schwengner, K. Kim, M. Zaman, S.C. Yang, M.W. Lee, S.G. Shin, Y. Kye, R. Massavczyh, R. John, A. Junghans, A. Wagner, A. Goswami, M.-H. Cho, Eur. Phys. J. A 50, 83 (2014)

    ADS  Article  Google Scholar 

  19. 19.

    C.F. Weizsacker, Z. Phys. 88, 612 (1934)

    ADS  Article  Google Scholar 

  20. 20.

    E.J. Williams, Phys. Rev. 45, 729 (1934)

    ADS  Article  Google Scholar 

  21. 21.

    NuDat 2.6, National Nuclear Data Center, Brookhaven National Laboratory, updated 2011.

  22. 22.

    S.Y.F. Chu, L.P. Ekstrom, R.B. Firestone, The Lund/LBNL, Nuclear Data Search, Version 2.0, February 1999, WWW Table of Radioactive Isotopes.

  23. 23.

    J.S. Hendricks, W.M. Gregg, L.F. Michael, R.J. Michael, C.J. Russell, W.D. Joe, P.F. Joshua, B.P. Denise, S.W. Laurie, W.M. William, MCNPX 2.6.0 Extensions, LANL Report LA-UR-08-2216, Los Alamos (2008).

  24. 24.

    S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2005)

    ADS  Article  Google Scholar 

  25. 25.

    J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006)

    ADS  Article  Google Scholar 

  26. 26.

    B. Veyssiere, H. Beil, R. Bergere, P. Carlos, A. Lepretre, Nucl. Phys. A 159, 561 (1970)

    ADS  Article  Google Scholar 

  27. 27.

    C. Fultz, R.L. Bramblett, J.T. Caldwell, N.A. Kerr, Phys. Rev. 127, 1273 (1962)

    ADS  Article  Google Scholar 

  28. 28.

    K. Vogt, P. Mohr, M. Babilon, W. Bayer, D. Galaviz, T. Hartmann, C. Hutter, T. Rauscher, K. Sonnabend, S. Volz, A. Zilges, Nucl. Phys. A 707, 241 (2002)

    ADS  Article  Google Scholar 

  29. 29.

    K.Y. Hara, H. Harada, F. Kitatani, S. Goko, S.Ya. Hohara, T. Kaihori, A. Makinaga, H. Utsunomiya, H. Toyokawa, K. Yamada, J. Nucl. Sci. Tech. 44, 938 (2007)

    Article  Google Scholar 

  30. 30.

    V.V. Varlamov, B.S. Ishkhanov, V.N. Orlin, S.Yu. Troshchiev, Izv. Rossiiskoi Akademii Nauk, Ser. Fiz., 74, 884 (2010)

  31. 31.

    V.Di. Napoli, A.M. Lacerenja, F. Salvetti, H.G. De Carvalho, J. Benuzzi Martins, Lett. Al Nuvo Cimento 1, 835 (1971)

  32. 32.

    Calculator and Graph Engine for Atomic Nuclei Parameters and Nuclear Reactions and Radioactive Decay Features, March 22, 2010.

  33. 33.

    A.J. Koning, D. Rochman, S.C. van der Marck, J. Kopecky, J. Ch. Sublet, M. Fleming, E. Bauge, S. Hilaire, P. Romain, B. Morillon, H. Duarte, S. C van der Marck, S. Pomp, H. Sjostrand, R. Forrest, H. Henriksson, O. Cabellos, S. Goriely, J. Leppanen, H. Leeb, A. Plompen and R. Mills, TENDL-2017: TALYS-based evaluated nuclear data library.

Download references


The authors are thankful to the staff of the electron LINAC (ELBE) at HZDR, Dresden, Germany and PAL, Pohang, Korea for providing the electron beam to carry out the experiments. This research was partly supported by the National Research Foundation of Korea (NRF) through a grant provided by the Ministry of Science and ICT (NRF-2017R1D1A1B03030484, NRF2013M7A1A1075764, NRF-2018R1A6A1A06024970, and NRF-2019H1D3A2A01102637).

Author information



Corresponding author

Correspondence to G. N. Kim.

Additional information

Communicated by Takashi Nakamura.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naik, H., Kim, G.N., Schwengner, R. et al. Photo-neutron cross-section of \({}^{{\mathrm {nat}}}{\mathrm {Dy}}\) in the bremsstrahlung end-point energies of 12, 14, 16, 65, and 75 MeV. Eur. Phys. J. A 56, 264 (2020).

Download citation