Measurement of flux-weighted average cross sections of \(^{\mathrm {{nat}}}\hbox {In}(\upgamma ,\hbox {xn})\) reactions and isomeric yield ratios of \(^{{112\mathrm {mg},111\mathrm {m},\mathrm {g},110\mathrm {m},\mathrm {g}}}\) In with bremsstrahlung


The flux-weighted average cross sections of \(^{\mathrm {nat}}\hbox {In}(\upgamma ,x\hbox {n}\)) reactions and isomeric yield ratios of \(^{112\mathrm {m,g}}\hbox {In}\), \(^{111\mathrm {m,g}}\hbox {In}\), and \(^{110\mathrm {m,g}}\hbox {In}\) were measured with the bremsstrahlung end-point energies of 50, 60, and 70 MeV using an activation and off-line \(\upgamma \)-ray spectrometric technique at the Pohang Accelerator Laboratory (PAL), Korea. It was observed that the average cross sections of the \(^{\mathrm {nat}}\hbox {In}(\upgamma ,\hbox {xn})\) reactions increase with bremsstrahlung energy up to the Gaint Dipole Resonance (GDR) region. Thereafter, it shows a small decrease trend with bremsstrahlung energy due to the opening of another reaction channel. The isomeric yield ratios of same product in the \((\upgamma ,\hbox {n})\), (n,2n), (p,x), (\(\upalpha ,\hbox {x})\), and \((^{{3}}\hbox {He},\hbox {x})\) reactions for various targets show that the spin of the target nucleus plays a vital role besides the effect of excitation energy and input angular momentum in determining the isomeric yield ratios.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data used in this paper are deposited in the EXFOR data library and TENDL-2019 data library, and the data produced during this study will be deposited in the EXFOR data library.]


  1. 1.

    N. Bohr, J.A. Wheeler, Phys. Rev. 56, 426 (1939)

    ADS  Google Scholar 

  2. 2.

    A.N. Ermakov, I.V. Makarenko, V.N. Orlin, B.S. Ishkhanov, I.M. Kapitonov, J. Korean Phys. Soc. 59, 1936 (2011)

    ADS  Google Scholar 

  3. 3.

    M.B. Chadwick, P. Obložinský, P.E. Hodgson, G. Reffo, Phys. Rev. C 44, 814 (1991)

    ADS  Google Scholar 

  4. 4.

    M. Herman, P. Obložinský, R. Capote, M. Sin, A. Trkov, A. Ventura, V. Zerkin, in proceedings of the Intl. Conf. Nuclear Data for Sci. and Tecn., Santafe, ND-2004, edited by R.C. Haight, M.B. Chadwick, T. Kawano, P. Talou, AIP Conf. Proc.769, 1184 (2005)

  5. 5.

    P. Talou, T. Kawano, P.G. Young, M.B. Chadwick, Nucl. Instrum. Methods A 562, 823 (2006)

    ADS  Google Scholar 

  6. 6.

    A. Leprêtre, H. Beil, R. Bergère, P. Carlos, A. De Miniac, A. Veyssiêre, K. Kernbach, Nucl. Phys. A 219, 39 (1974)

    ADS  Google Scholar 

  7. 7.

    S.C. Fultz, B.L. Berman, J.T. Caldwell, R.L. Bramblett, M.A. Kelly, Phys. Rev. 186, 1255 (1969)

    ADS  Google Scholar 

  8. 8.

    V.M. Mazur, Z.M. Bigan, D.M. Symochko, Phys. Part. Nucl. Lett. 5, 374 (2008)

    Google Scholar 

  9. 9.

    F. Tárkányi, F. Ditrói, A. Hermanne, S. Takács, M. Baba, Appl. Radiat. Isot. 107, 391 (2016)

    Google Scholar 

  10. 10.

    F. Tárkányi, S. Takács, F. Ditrói, A. Hermanne, M. Baba, B.M.A. Mohsena, A.V. Ignatyuk, Nucl. Instrum. Methods B 351, 6 (2015)

    ADS  Google Scholar 

  11. 11.

    S. Lahiri, M. Maiti, K. Ghosh, J. Radioanal. Nucl. Chem. 297, 309 (2013)

    Google Scholar 

  12. 12.

    Technical Report Series (TRS) No. 468, Cyclotron Produced Radionuclides: Physical Characteristics and Production Method, IAEA publications, Vienna 2009

  13. 13.

    S. Sudár, S.M. Qaim, Phys. Rev. C 53, 2885 (1996)

    ADS  Google Scholar 

  14. 14.

    C.D. Nesaraja, S. Sudár, S.M. Qaim, Phys. Rev. C 68, 024603 (2003)

    ADS  Google Scholar 

  15. 15.

    S.M. Qaim, S. Sudár, A. Fessler, Radiochim. Acta 93, 503 (2005)

    Google Scholar 

  16. 16.

    M.S. Rahman, K.-S. Kim, M.W. Lee, G.N. Kim, Y. Oh, H.-S. Lee, M.-H. Cho, I.S. Ko, W. Namkung, V.D. Nguyen, D.K. Pham, T.T. Kim, T.-I. Ro, J. Radioanal. Nucl. Chem. 283, 519 (2010)

    Google Scholar 

  17. 17.

    J.R. Huizenga, R. Vandenbosch, Phys. Rev. 120, 1305 (1960)

    ADS  Google Scholar 

  18. 18.

    C.T. Bishop, H.K. Vonach, J.R. Huizenga, Nucl. Phys. 60, 241 (1964)

    Google Scholar 

  19. 19.

    S.M. Qaim, Nucl. Phys. A 185, 614 (1972)

    ADS  Google Scholar 

  20. 20.

    N.I. Molla, S.M. Qaim, Nucl. Phys. A 283, 269 (1977)

    ADS  Google Scholar 

  21. 21.

    H. Naik, G.N. Kim, R. Schwengner, K. Kim, M. Zaman, S.C. Yang, S.G. Shin, Y.-U. Kye, R. Massarczyk, R. John, A. Junghans, A. Wagner, A. Goswami, M.-H. Cho, Eur. Phys. J. A. 52, 47 (2016)

    ADS  Google Scholar 

  22. 22.

    T.D. Thiep, T.T. An, P.V. Cuong, N.T. Vinh, A.G. Belov, O.D. Maslov, G.Y. Starodub, B.N. Markov, Phys. Part. Nucl. 10, 340 (2013)

    Google Scholar 

  23. 23.

    S.R. Palvanov, O. Razhabov, Atom. Energy 87, 533 (1999)

    Google Scholar 

  24. 24.

    J.H. Carver, G.E. Coote, T.R. Sherwood, Nucl. Phys. 37, 449 (1962)

    Google Scholar 

  25. 25.

    M.G. Davydov, V.G. Magera, A.V. Trukhov, Atom. Energy 62, 277 (1987)

    Google Scholar 

  26. 26.

    S.R. Palvanov, Phys. Atom. Nucl. 77, 35 (2014)

    Google Scholar 

  27. 27.

    O.A. Bezshyykoa, A.N. Vodinb, L.O. Golinka-Bezshyykoa, A.M. Dovbnya, I.N. Kadenkoa, I.N. Kadenko, A.O. Kivernyk, A.A. Kovalenko, V.A. Kushnir, A.I. Levon, V.V. Mitrochenko, S.M. Olejnik, G.E. Tuller, Bull. Russ. Acad. Sci. Phys. 75, 941 (2011)

    Google Scholar 

  28. 28.

    D. Kolev, E. Dobreva, N. Nenov, V. Todorov, Nucl. Instrum. Methods A 356, 390 (1995)

    ADS  Google Scholar 

  29. 29.

    M.S. Rahman, K.-S. Kim, M.W. Lee, G.N. Kim, Y.D. Oh, H.-S. Lee, M.-H. Cho, I.S. Ko, W. Namkung, N.V. Do, P.D. Khue, K.T. Thanh, T.-I. Ro, Nucl. Instrum. Methods B 267, 13 (2010)

    ADS  Google Scholar 

  30. 30.

    A.J. Koning, D. Rochman, Nucl. Data Sheet 113, 2841 (2012)

    ADS  Google Scholar 

  31. 31.

    S. Agostinelli et al. (GEANT 4 Collaboration), Nucl. Instrum. Methods A 506, 250 (2003)

  32. 32.

    M. Herman, R. Capote, B.V. Carlson, P. Obložinský, M. Sin, A. Trkov, H. Wienke, V. Zerkin, Nucl. Data Sheets 108, 2655 (2007)

    ADS  Google Scholar 

  33. 33.

    M. Herman, R. Capote, M. Sin, A. Trkov, B.V. Carlson, P. Oblozinsky, C.M. Mattoon, H. Wienke, S. Hoblit, Y.-S. Cho, G.P.A Nobre, V.A. Plujko, V. Zerkin, EMPIRE-3.2 Malta–Modular system for nuclear reaction calculations and nuclear data evaluation, report INDC (NDS)-0603, BNL-101378-2013 National Nuclear Data Center, Brookhaven National Laboratory.

  34. 34.

    V.D. Nguyen, D.K. Pham, T.T. Kim, D.T. Tran, V.D. Phung, Y.-S. Lee, G.N. Kim, Y.D. Oh, H.-S. Lee, H. Kang, M.-H. Cho, I.S. Ko, W. Namkung, J. Korean Phys. Soc. 50, 417 (2007)

    Google Scholar 

  35. 35.

    G.N. Kim, Y.S. Lee, V. Skoy, V. Kovalchuk, M.-H. Cho, I.S. Ko, W. Namkung, D.W. Lee, H.D. Kim, S.K. Ko, S.H. Park, D.S. Kim, T.I. Ro, Y.G. Min, J. Korean Phys. Soc. 38, 14 (2001)

    Google Scholar 

  36. 36.

    M.S. Rahman, K.-S. Kim, M.W. Lee, G.N. Kim, Y.D. Oh, H.-S. Lee, M.-H. Cho, I.-S. Ko, W. Namkung, N.V. Do, P.D. Khue, K.T. Thanh, T.I. Ro, Nucl. Instrum. Methods B 267, 3511 (2009)

    ADS  Google Scholar 

  37. 37.

    C.F. Weizsäcker, Z. Phys. 88, 612 (1934)

    ADS  Google Scholar 

  38. 38.

    E.J. Williams, Phys. Rev. 45, 729 (1934)

    ADS  Google Scholar 

  39. 39.

    S.Y.F. Chu, L.P. Ekström, R.B. Firestone, in Table of Radioactive Isotopes, database version 1999-02-28.

  40. 40.

    Russia Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Centre for Photonuclear Experiments Data “Nuclear Reaction Database (EXFOR)”.

  41. 41.

    H. Naik, G.N. Kim, K. Kim, M. Zaman, A. Goswami, M.W. Lee, S.-C. Yang, Y.-O. Lee, S.-G. Shin, M.-H. Cho, Nucl. Phys. A 948, 28 (2016)

    ADS  Google Scholar 

  42. 42.

    M. Zaman, G.N. Kim, H. Naik, K.S. Kim, S.-C. Yang, M. Shahid, S.-G. Shin, M.-H. Cho, Eur. Phys. J. A. 51, 5 (2015)

    ADS  Google Scholar 

  43. 43.

    M.S. Rahman, K. Kim, G.N. Kim, H. Naik, M. Nadeem, N.T. Hien, M. Shahid, S.-C. Yang, Y.-S. Cho, Y.-O. Lee, S.-G. Shin, M.-H. Cho, M.W. Lee, Y.-R. Kang, G.-M. Yang, T.-I. Ro, Eur. Phys. J. A. 52, 194 (2016)

    ADS  Google Scholar 

  44. 44.

    M. Karadag, H. Yücel, M. Tan, A. Özmen, Nucl. Instrum. Methods A 501, 524 (2003)

    ADS  Google Scholar 

  45. 45.

    National Institute of Standards and Technology (NIST), NIST physical reference data, USA.

  46. 46.

    M. Shahid, K. Kim, H. Naik, M. Zaman, G.N. Kim, S.-C. Yang, T.-Y. Song, Nucl. Instrum. Methods B 342, 158 (2015)

    ADS  Google Scholar 

  47. 47.

    A.J. Koning, M.B. Chadwick, Phys. Rev. C 56, 970 (1997)

    ADS  Google Scholar 

  48. 48.

    E. Běták, E. Rurarz, S. Mikołajewski, J. Wojtkowska, Nukleonika 52, 17 (2007)

    Google Scholar 

  49. 49.

    E. Běták, EPJ Web Conf. 21, 09004 (2012)

    Google Scholar 

  50. 50.

    A.V. Ignatyuk, ICTP-IAEA Joint Workshop on Nuclear Data for Science and Technology, ICTP-2484-7: Medical Applications, Statistical theory of nuclear reactions 2484-7, pp 1–17 (2013)

  51. 51.

    E. Jacobs, H. Thierens, D. De Frenne, A. De Clercq, P. D\(^{\prime }\)hondt, P. De Gelder, A.J. Deruytter, Phys. Rev. C 19, 422 (1979)

  52. 52.

    NuDat 2.6, NationalNuclear Data Center, Brookhaven National Laboratory, updated 2011.

  53. 53.

    P. Decowski, W. Grochulski, J. Karolyi, A. Marcinkowski, J. Piotrowski, E. Saad, Z. Wilhelmi, Nucl. Phys. A 204, 121 (1973)

    ADS  Google Scholar 

  54. 54.

    B. Minetti, A. Pasquarelli, Z. Phys. A Hadrons Nucl. 217, 83 (1968)

    Google Scholar 

  55. 55.

    F.I. Habbani, I.A. Ahmed, Appl. Radiat. Isot. 51, 81 (1999)

    Google Scholar 

  56. 56.

    K. Wei, Z. Wenrong, Y. Weixiang, Y. Xialin, L. Hanlin, Chin. J. Nucl. Phys (Beijing) 11, 11 (1989).

  57. 57.

    T.B. Ryves, M. Hongchang, S. Judge, P. Kolkowski, J. Phys. G Nucl. Phys. 9, 1549 (1983)

    ADS  Google Scholar 

  58. 58.

    P.E. Francois, N.S. Shakir, J. Inorg. Nucl. Chem. 41, 1212 (1979)

    Google Scholar 

  59. 59.

    K.A. Baskova, Y.V. Krivonogov, B.M. Makuni, E.A. Skakum, T.V. Chugai, L.Y. Shavtvalov, Bull. Russ. Acad. Sci. Phys. 48, 36 (1984).

  60. 60.

    E.A. Skakun, A.P. Klyucharev, Y.N. Rakivnenko, I.A. Romanii, Bull. Russ. Acad. Sci. Phys. 39, 24 (1975).

  61. 61.

    D.G. Sarantites, Nucl. Phys. A 93, 567 (1967)

    ADS  Google Scholar 

  62. 62.

    R. Guin, S.K. Saha, S. Prakash, M. Uhl, Phys. Rev. C 46, 250 (1992)

    ADS  Google Scholar 

  63. 63.

    F. Smend, W. Weirauch, W.D. Schmidt-Ott, Z. Phys. A Hadrons Nucl. 214, 437 (1968)

    Google Scholar 

  64. 64.

    E.A. Skakun, V.G. Batij, Z. Phys. A Hadrons Nucl. 344, 13 (1992)

    Google Scholar 

  65. 65.

    E.A. Skakun, A. Iordachescu, V.A. Lutsik, Yu.N. Rakivnenko, I.A. Romany, Excitation Functions and Isomeric Ratios for \(^{{111}}\)Cd(p,n)\(^{{\rm 113m,g}}\text{In}\) and \(^{{113}}\)Cd(p,n)\(^{113{\rm m}}\text{ In }\) in reactions, 29th Conf. on Nucl. Spectr. and Nucl. Struct., Riga 1979, p. 290, USSR.

  66. 66.

    V.D. Avchukhov, K.A. Baskova, S.S. Vasil’ev, V.V. Krotova, B.M. Makuni, E.A. Skakun, T.V. Chugaj, L.J. Shavtvalov, Izvestiya Akademii Nauk KazSSSR Fiz. Mat 1978, 2 (1978).

  67. 67.

    M. Marten, A. Schüring, W. Scobel, H.J. Probst, Z. Phys. A Atoms Nucl. 322, 93 (1985)

    ADS  Google Scholar 

  68. 68.

    F. Tárkányi, F. Szelecsényi, P. Kopecký, T. Molnár, L. Andó, P. Mikecz, G.Y. Tóth, A. Rydl, Appl. Radiat. Isot. 45, 239 (1994)

    Google Scholar 

Download references


The authors are thankful to the staff of electron linac at PAL, Pohang, Korea for providing the electron beam to carry out the experiments. This research was partly supported by the National Research Foundation of Korea (NRF) through a grant provided by the Ministry of Science and ICT (NRF-2017R1D1A1B03030484, NRF-2018M7A1A1072274, NRF-2018R1A6A1A06024970, and NRF-2019H1D3A2A01102637). One of authors (Md. S. Rahman) was supported by the Korean Brain Pool Program (No. 151S-1-3-1357) of Korean Federation of Science and Technology Societies (KOFST).

Author information



Corresponding author

Correspondence to Guinyun Kim.

Additional information

Communicated by Sailajananda Bhattacharya.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.S., Kim, K., Nguyen, T.H. et al. Measurement of flux-weighted average cross sections of \(^{\mathrm {{nat}}}\hbox {In}(\upgamma ,\hbox {xn})\) reactions and isomeric yield ratios of \(^{{112\mathrm {mg},111\mathrm {m},\mathrm {g},110\mathrm {m},\mathrm {g}}}\) In with bremsstrahlung. Eur. Phys. J. A 56, 235 (2020).

Download citation