Skip to main content

A systematic experimental study of pre-compound emission in \(\alpha \)-particle induced reactions on odd mass nuclei A = 103–123

Abstract

The compound and pre-compound emission processes have been established as two main competing de-excitation modes of an excited nucleus by-dint-of evaporation and emission of light fast particles in low energy \(\alpha \)-induced reactions, respectively. An existence of the plenty experimental data on above established processes for a wide range of mass nuclei coerces to drive for some systematic trends in such reactions with excitation energy and mass number (A). Present work is an attempt to develop a systematics on the pre-compound emission process by analysing consistent experimental cross-section data of \(\alpha \)-particle induced reactions on odd Z and odd A isotopic target nuclei viz., \(^{103}\)Rh, \(^{107}\)Ag, \(^{109}\)Ag, \(^{113}\)In, \(^{115}\)In, \(^{121}\)Sb, and \(^{123}\)Sb, respectively. The analysis of data indicates sarcastic deviation in the experimental cross-section data with respect to calculations performed by the statistical Monte-Carlo code pace4 beyond the peak region. Such deviation becomes more prominent towards tail portion of excitation functions, which is regarded as a significant contribution of the pre-compound emission process. Observed energy dependent uniformity of such deviation for all studied reactions gives a clue for existing some systematics on concerning process with atomic mass number (A). Present study is an extension of previous work [Eur. Phys. J. A 54, 205 (2018)], but rather in more precise way for nearby isotopic target mass nuclei \(^{107}\)Ag, \(^{109}\)Ag, \(^{113}\)In, \(^{115}\)In, \(^{121}\)Sb, and \(^{123}\)Sb, respectively, where role of the Coulomb barrier V\(_b\) and target deformation is found to be significantly important in the systematic decay of excited nuclei through emission of light fast particles in pre-compound process with mass number (A).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

References

  1. B.P. Singh, H.D. Bhardwaj, R. Prasad, Can. J. Phys. 69, 1376 (1991)

    ADS  Google Scholar 

  2. B.P. Singh, H.D. Bhardwaj, R. Prasad, Nuov. Cim. A 104, 475 (1991)

    ADS  Google Scholar 

  3. Manoj Kumar Sharma, H.D. Bhardwaj, Unnati, P.P. Singh, B.P. Singh, R. Prasad, Eur. Phys. J. A. 31, 43 (2007)

    ADS  Google Scholar 

  4. J. Pal, C.C. Dey, P. Banerjee, S. Bose, B.K. Sinha, M.B. Chatterjee, Phys. Rev. C 71, 034605 (2005)

    ADS  Google Scholar 

  5. S. Mukherjee, N.L. Singh, G. Kiran Kumar, L. Chaturvedi, Phys. Rev. C 72, 014609 (2005)

    ADS  Google Scholar 

  6. M.K. Sharma, M. Kumar, Mohd Shuaib, V.R. Sharma, A. Yadav, P.P. Singh, D.P. Singh, B.P. Singh, R. Prasad, Eur. Phys. J. A 54, 205 (2018)

    ADS  Google Scholar 

  7. M.K. Sharma, M.M. Musthafa, Mohd Shuaib, M. Kumar, V.R. Sharma, A. Yadav, P.P. Singh, D.P. Singh, B.P. Singh, R. Prasad, Phys. Rev. C 99, 014608 (2019)

    ADS  Google Scholar 

  8. J.R. Wu, C.C. Chang, H.D. Holmgren, Phys. Rev. C 19, 669 (1979)

    ADS  Google Scholar 

  9. T.C. Awes, G. Poggi, C.K. Gelbke, B.B. Back, B.G. Glagola, H. Breuer, V.E. Ciola, Phys. Rev. C 24, 89 (1981)

    ADS  Google Scholar 

  10. M.K. Sharma, P.P. Singh, V.R. Sharma, M. Shuaib, D.P. Singh, A. Yadav, Unnati, R. Kumar, B.P. Singh, R. Prasad, Phys. Rev. C 94, 044617 (2016)

    ADS  Google Scholar 

  11. E. Gadioli, E. Gadiolli-Ebra, J.J. Hogan, B.V. Jacab, Phys. Rev. C 29, 76 (1984)

    ADS  Google Scholar 

  12. J. Ernst, W. Friedland, H. Stockhorst, Z. Phys, A Atomic Nuclei 328, 333 (1987)

    Google Scholar 

  13. S. Sudár, S.M. Qaim, Phys. Rev. C 73, 034613 (2006)

    ADS  Google Scholar 

  14. A. Kaplan et al., J. Fusion Energ 35, 715 (2016)

    Google Scholar 

  15. A. Kaplan, J. Fusion Energ 32, 382 (2013)

    ADS  Google Scholar 

  16. A. Aydin, E. Tel, A. Kaplan, H. Büyükuslu, Ann Nucl Energy 37, 1316 (2010)

    Google Scholar 

  17. A. Kaplan, E. Tel, A. Aydin, S. Okuducu, Int. J. Mod. Phys. E 18, 1871 (2009)

    ADS  Google Scholar 

  18. A. Hermanne, M. Sonck, S. Takács, F. Szelecsényi, F. Tárkányi, Nucl. Instrum. Methods. Phys. Res. B 152, 187 (1999)

    ADS  Google Scholar 

  19. Xiufeng Peng, Fuqing He, Xianguan Long, Nucl. Instrum. Methods Phys. Res. B 152, 432 (1999)

    ADS  Google Scholar 

  20. M.S. Uddin, B. Scholten, Nucl. Instrum. Methods Phys Res. B 380, 15 (2016)

    ADS  Google Scholar 

  21. S. Sudár, S.M. Qaim, Phys. Rev. C 50, 2408 (1994)

    ADS  Google Scholar 

  22. K.F. Hassan, S.M. Qaim, Z.A. Saleh, H.H. Coenen, Appl. Radiat. Isot. 64, 101 (2006)

    Google Scholar 

  23. M.S. Uddin, A. Hermanne, S. Sudár, M.N. Aslam, B. Scholten, H.H. Coenen, S.M. Qaim, Appl. Radiat. Isot 69, 699 (2011)

    Google Scholar 

  24. F. Tárkányi, F. Ditrói, A. Hermanne, S. Takács, A.V. Ignatyuk, J. Radioanal. Nucl. Chem 298, 277 (2013)

    Google Scholar 

  25. P. Mohr, Eur. Phys. J. A. 51, 56 (2015)

    ADS  Google Scholar 

  26. M. Yigit, and M.E. Korkmaz, Mod. Phys. Lett. 33, No. 26 1850155 (2018)

  27. D. Suchiang, J. Joseph, B.M. Jyrwa, Indian J. Pure Appl. Phys. 51, 696 (2013)

    Google Scholar 

  28. A.V. Mohan, S.N. Chintalapudi, J. Phys. Soc. Jpn. 63, 84 (1994)

    ADS  Google Scholar 

  29. F. Tarkanyi, S. Takacs, B. Kiraly, F. Szelecsenyi, L. Ando, J. Bergman, S.-J. Heselius, O. Solin, A. Hermanne, YuN Shubin, A.V. Ignatyuk, Appl. Radiat. Isot. 67, 1001 (2009)

    Google Scholar 

  30. M. Blann, Phys. Rev. Lett. 27, 337 (1971)

    ADS  Google Scholar 

  31. P.E. Hodgson, Nature 292, 671 (1981)

    ADS  Google Scholar 

  32. EXFOR: Experimental nuclear reactions, https://wwww-nds.iaea.org/exfor

  33. A. Gavron, Phys. Rev. C 21, 230 (1980)

    ADS  Google Scholar 

  34. PACE4 code http://lise.nscl.msu.edu/pace4

  35. B.P. Singh, Manoj K. Sharma, M.M. Muthafa, H.D. Bhardwaj, R. Prasad, Nucl. Instrum. Methods A 562, 717 (2006)

    ADS  Google Scholar 

  36. Z. Korkulu, N. Özkan, G.G. Kiss, T. Szücs, Gy Gyürky, Zs Fülöp, R.T. Güray, Z. Halász, T. Rauscher, E. Somorjai, Zs Török, C. Yalçin, Phys. Rev. C 97, 0456893 (2018)

    Google Scholar 

  37. M.S. Uddin, A. Hermanne, S. Sudar, M.N. Aslam, B. Scholten, H.H. Coenen, S.M. Qaim, J. Appl. Radiat. Isot. 69, 699 (2011)

    Google Scholar 

  38. M. Ismail, Phys. Rev. C 41, 87 (1990)

    ADS  Google Scholar 

  39. M.S. Gadkari, N.L. Singh, Pramana. J. Phys. 62, 1059 (2004)

    ADS  Google Scholar 

  40. M. Afzal Ansari, N.P.M. Sathik, B.P. Singh, M.G.V. Sankaracharyulu, R. Prasad, Int. J. Mod. Phys. E 05, 345 (1996)

    ADS  Google Scholar 

  41. G.W.A. Newton, V.J. Robinson, E.M. Shaw, J. Inorg. Nucl. Chem. 43, 2227 (1981)

    Google Scholar 

  42. Luisa F. Hansen, Marion L. Stelts, Phys. Rev. 136, B1000 (1964)

    ADS  Google Scholar 

  43. C. Yalçin, Gy Gyürky, T. Rauscher, G.G. Kiss, N. Özkan, R.T. Güray, Z. Halász, T. Szücs, Zs Fülöp, J. Farkas, Z. Korkulu, E. Somorjai, Phys. Rev. C 91, 034610 (2015)

    ADS  Google Scholar 

  44. A.K. Chaubey, M.K. Bhardwaj, R.P. Gautam, R.K.Y. Singh, M. AfzalAnsari, I.A. Rizvi, H. Singh, J. Appl. Radiat. Isot. 41, 401 (1990)

    Google Scholar 

  45. F. Tarkanyi, S. Takács, F. Ditroi, A. Hermanne, M. Baba, B.M.A. Mohsena, A.V. Ignatyuk, Nucl. Instrum. Methods Phys. Res. B 351, 6 (2015)

    ADS  Google Scholar 

  46. P. Misaelides, H. Münzel, J. Inorg. Nucl. Chem. 42, 937 (1980)

    Google Scholar 

  47. C. Wasilevsky, M. de la Vega Vedoya, S.J. Nassiff, J. Radioanalytical, Nucl. Chem 89, 531 (1985)

    Google Scholar 

  48. C. Wasilevsky, M. De La Vega Vedoya, S.J. Nassiff, J. Appl. Radiat. Isot 37, 319 (1986)

    Google Scholar 

  49. C. Yalçin, R.T. Güray, N. Özkan, S. Kutlu, Gy Gyürky, J. Farkas, G.G. Kiss, Zs Fülöp, A. Simon, E. Somorjai, T. Rauscher, Phys. Rev. C 79, 065801 (2009)

    ADS  Google Scholar 

  50. A.E. Antropov, in Proceedings of Conf. Nucl. Spectroscopy Nucl. Struct., Leningrad, p. 343 (1990)

  51. K.A. Baskova, E.A. Skakun, T.V. Chugai, L.Ya. Shavtvalov, Yad. Fiz. 39, 538 (1984)

    Google Scholar 

  52. G.G. Kiss, T. Szücs, P. Mohr, Zs Török, R. Huszánk, Gy Gyürky, Zs Fülöp, Phys. Rev. C 97, 055803 (2018)

    ADS  Google Scholar 

  53. M. Aikawa, M. Saito, N. Ukon, Y. Komori, H. Haba, Nucl. Inst. Meths. B 426, 18 (2018)

    ADS  Google Scholar 

  54. M.K. Bhardwaj, I.A. Rizvi, A.K. Chaubey, Int. J. Mod. Phys. E 01, 389 (1992)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, VECC, Kolkata, India for extending all the facilities for carrying out the experiments. One of the authors M.K.S. thanks the Council of Scientific and Industrial Research (CSIR), New Delhi (Project No. 03(361)16/EMR-11 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar Sharma.

Additional information

Communicated by Sailajananda Bhattacharya

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharma, M.K., Kumar, M., Shuaib, M. et al. A systematic experimental study of pre-compound emission in \(\alpha \)-particle induced reactions on odd mass nuclei A = 103–123. Eur. Phys. J. A 56, 247 (2020). https://doi.org/10.1140/epja/s10050-020-00238-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00238-1