Heavy flavour Langevin diffusion with the chromo-electromagnetic field fluctuations in the quark–gluon plasma

Abstract

The chromo-electromagnetic field is produced due to the motion of partons in a quark–gluon plasma created by relativistic heavy-ion collisions. The fluctuations in the produced chromo-electromagnetic field are important, since they cause heavy quarks to gain energy in the low velocity limit. We study the effect of such fluctuations on heavy quark diffusion in quark–gluon plasma within the framework of Langevin dynamics under the background matter described by the (\(3+1\))-dimensional relativistic viscous hydrodynamics. Theoretical calculations of the nuclear modification factor (\(R_{AA}\)) of heavy mesons (D and B mesons), with the effect of these fluctuations, are compared with experimental measurements in AuAu collisions at \(\sqrt{s_{NN}} = 200\) GeV by the STAR experiment at the BNL Relativistic Heavy Ion Collider (RHIC) and PbPb collisions at \(\sqrt{s_{NN}} = 2.76\) and 5.02 TeV by the ALICE and CMS experiments at the CERN Large Hadron Collider (LHC). In addition to that, the elliptic flow (\(v_2\)) of D-meson has been calculated in the same framework for PbPb collisions at \(\sqrt{s_{NN}} = 2.76\) and compared with ALICE measurements. We find a significant effect of these fluctuations in describing the measured \(R_{AA}\) and \(v_2\) of heavy flavour mesons at both RHIC and LHC energies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.]

References

  1. 1.

    E.V. Shuryak, Nucl. Phys. A 750, 64 (2005)

    ADS  Google Scholar 

  2. 2.

    B.V. Jacak, B. Muller, Science 337, 310 (2012)

    ADS  Google Scholar 

  3. 3.

    M. Gyulassy, L. McLerran, Nucl. Phys. A 750, 30 (2005)

    ADS  Google Scholar 

  4. 4.

    D. Teaney, J. Lauret, E.V. Shuryak, Phys. Rev. Lett. 86, 4783 (2001)

    ADS  Google Scholar 

  5. 5.

    P. Huovinen, P.F. Kolb, U.W. Heinz, P.V. Ruuskanen, S.A. Voloshin, Phys. Lett. B 503, 58 (2001)

    ADS  Google Scholar 

  6. 6.

    T. Hirano, K. Tsuda, Phys. Rev. C 66, 054905 (2002)

    ADS  Google Scholar 

  7. 7.

    H. Song, U.W. Heinz, Phys. Lett. B 658, 279 (2008)

    ADS  Google Scholar 

  8. 8.

    H. Song, S.A. Bass, U. Heinz, T. Hirano, C. Shen, Phys. Rev. Lett. 106, 192301 (2011)

    ADS  Google Scholar 

  9. 9.

    H. Song, S.A. Bass, U. Heinz, Phys. Rev. C 83, 054912 (2011)

    ADS  Google Scholar 

  10. 10.

    A. Vitev, J. Phys. G 35, 104011 (2008)

    ADS  Google Scholar 

  11. 11.

    R. Rapp, H. van Hees, R.C. Hwa, X.N. Wang (eds.), in Quark Gluon Plasma 4 (World Scientific, Singapore, 2010), p. 111

  12. 12.

    G.D. Moore, D. Teaney, Phys. Rev. C 71, 064904 (2005)

    ADS  Google Scholar 

  13. 13.

    H. van Hees, V. Greco, R. Rapp, Phys. Rev. C 73, 034913 (2006)

    ADS  Google Scholar 

  14. 14.

    S. Cao, S.A. Bass, Phys. Rev. C 84, 064902 (2011)

    ADS  Google Scholar 

  15. 15.

    B. Svetitsky, Phys. Rev. D 37, 2484 (1988)

    ADS  MathSciNet  Google Scholar 

  16. 16.

    M.G. Mustafa, D. Pal, D.K. Srivastava, Phys. Rev. C 57, 889 (1998)

    ADS  Google Scholar 

  17. 17.

    D.B. Walton, J. Rafelski, Phys. Rev. Lett. 84, 31 (2000)

    ADS  Google Scholar 

  18. 18.

    J. Dunkel, P. Hanggi, Phys. Rev. E 71, 016124 (2005)

    ADS  Google Scholar 

  19. 19.

    J. Dunkel, P. Hanggi, Phys. Rev. E 72, 036106 (2005)

    ADS  MathSciNet  Google Scholar 

  20. 20.

    J. Dunkel, P. Hanggi, Phys. Rep. 471, 1 (2009)

    ADS  MathSciNet  Google Scholar 

  21. 21.

    M. He, H. van Hees, P.B. Gossiaux, R.J. Fries, R. Rapp, Phys. Rev. E 88, 032138 (2013)

    ADS  Google Scholar 

  22. 22.

    A. Adronic et al., Eur. Phys. J. C 76, 107 (2016)

    ADS  Google Scholar 

  23. 23.

    F. Prino, R. Rapp, J. Phys. G 43, 093002 (2016)

    ADS  Google Scholar 

  24. 24.

    R. Rapp et al., Nucl. Phys. A 979, 21 (2018)

    ADS  Google Scholar 

  25. 25.

    S. Cao et al., arXiv:1809.07894

  26. 26.

    X. Dong, V. Greco, Prog. Part. Nucl. Phys. 104, 97 (2019)

    ADS  Google Scholar 

  27. 27.

    S.K. Das, F. Scardina, S. Plumari, V. Greco, Phys. Lett. B 747, 260 (2015)

    ADS  Google Scholar 

  28. 28.

    S. Li, C. Wang, X. Yuan, S. Feng, Phys. Rev. C 98, 014909 (2018)

    ADS  Google Scholar 

  29. 29.

    S. Li, C. Wang, Phys. Rev. C 98, 034914 (2018)

    ADS  Google Scholar 

  30. 30.

    H. van Hees, M. Mannarelli, V. Greco, R. Rapp, Phys. Rev. Lett. 100, 192301 (2008)

    ADS  Google Scholar 

  31. 31.

    P.B. Gossiaux et al., arXiv:1102.1114

  32. 32.

    P.B. Gossiaux, J. Aichelin, M. Bluhm, T. Gousset, M. Nahrgang, S. Vogel, K. Werner, PoS QNP 2012, 160 (2012)

    Google Scholar 

  33. 33.

    Y. Akamatsu, T. Hatsuda, T. Hirano, Phys. Rev. C 79, 054907 (2009)

    ADS  Google Scholar 

  34. 34.

    Y. Akamatsu, T. Hatsuda, T. Hirano, Nucl. Phys. A 830, 865 (2009)

    ADS  Google Scholar 

  35. 35.

    W.M. Alberico et al., Eur. Phys. J. C 71, 1666 (2011)

    ADS  Google Scholar 

  36. 36.

    W.M. Alberico et al., Eur. Phys. J. C 73, 248 (2013)

    Google Scholar 

  37. 37.

    C. Young, B. Schenke, S. Jeon, C. Gale, Phys. Rev. C 86, 034905 (2012)

    ADS  Google Scholar 

  38. 38.

    M. He, R.J. Fries, R. Rapp, Phys. Rev. C 86, 014903 (2012)

    ADS  Google Scholar 

  39. 39.

    T. Lang, H. van Hees, J. Steinheimer, M. Bleicher, arXiv:1208.1643

  40. 40.

    S. Cao, G.Y. Qin, S.A. Bass, B. Müller, Nucl. Phys. A 904, 653c (2013)

    ADS  Google Scholar 

  41. 41.

    S. Cao, G.Y. Qin, S.A. Bass, J. Phys. G. 40, 085103 (2013)

    ADS  Google Scholar 

  42. 42.

    S. Cao, G.Y. Qin, S.A. Bass, Phys. Rev. C 92, 024907 (2015)

    ADS  Google Scholar 

  43. 43.

    H. Xu, X. Dong, L. Ruan, Q. Wang, Z. Xu, Y. Zhang, Phys. Rev. C 89, 024905 (2014)

    ADS  Google Scholar 

  44. 44.

    M. He, R.J. Fries, R. Rapp, Phys. Rev. Lett. 110, 112301 (2013)

    ADS  Google Scholar 

  45. 45.

    S.K. Das, F. Scardina, S. Plumari, V. Greco, Phys. Rev. C 90, 044901 (2014)

    ADS  Google Scholar 

  46. 46.

    F. Scardina, S.K. Das, V. Minissale, S. Plumari, V. Greco, Phys. Rev. C 96, 044905 (2017)

    ADS  Google Scholar 

  47. 47.

    Y. Xu, S. Cao, M. Nahrgang, J.E. Bernhard, S.A. Bass, Phys. Rev. C 97, 014907 (2018)

    ADS  Google Scholar 

  48. 48.

    M.H. Thoma, M. Gyulassy, Nucl. Phys. B 351, 491 (1991)

    ADS  Google Scholar 

  49. 49.

    E. Brateen, M.H. Thoma, Phys. Rev. D 44, R2625 (1991)

    ADS  Google Scholar 

  50. 50.

    A. Meistrenko, A. Pashier, J. Uphoff, C. Greiner, Nucl. Phys. A 901, 51 (2013)

    ADS  Google Scholar 

  51. 51.

    S. Peigne, A. Peshier, Phys. Rev. D 77, 114017 (2008)

    ADS  Google Scholar 

  52. 52.

    Y.L. Dokshitzer, D.E. Kharzeev, Phys. Lett. B 519, 199 (2001)

    ADS  Google Scholar 

  53. 53.

    Y.L. Dokshitzer, V.A. Khoze, S.I. Troian, J. Phys. G 17, 1602 (1991)

    ADS  Google Scholar 

  54. 54.

    R. Abir, C. Greiner, M. Martinez, M.G. Mustafa, J. Uphoff, Phys. Rev. D 85, 054012 (2012)

    ADS  Google Scholar 

  55. 55.

    O. Fochler, Z. Xu, C. Greiner, Phys. Rev. Lett. 102, 202301 (2009)

    ADS  Google Scholar 

  56. 56.

    P.B. Gossiaux, J. Aichelin, T. Gousset, V. Guiho, J. Phys. G 37, 094019 (2010)

    ADS  Google Scholar 

  57. 57.

    S. Wicks, W. Horowitz, M. Djordjevic, M. Gyulassy, Nucl. Phys. A 784, 426 (2007)

    ADS  Google Scholar 

  58. 58.

    S. Wicks, W. Horowitz, M. Djordjevic, M. Gyulassy, Nucl. Phys. A 783, 493 (2007)

    ADS  Google Scholar 

  59. 59.

    M. Djordjevic, M. Gyulassy, Nucl. Phys. A 733, 265 (2004)

    ADS  Google Scholar 

  60. 60.

    W.C. Xiang, H.T. Ding, D.C. Zhou, D.E. Rohrich, Phys. J. A 25, 75 (2005)

    ADS  Google Scholar 

  61. 61.

    R. Abir, U. Jamil, M.G. Mustafa, D.K. Srivastava, Phys. Lett. B 715, 186 (2012)

    ADS  Google Scholar 

  62. 62.

    L. Adamczyk, et al. (STAR Collaboration), Phys. Rev. Lett. 113 142301 (2014)

  63. 63.

    J. Adam et al. (ALICE Collaboration), J. High Energy Phys. 03 081 (2016)

  64. 64.

    B. Abelev, et al. (ALICE Collaboration), J. High Energy Phys. 09 112 (2012)

  65. 65.

    CMS Collaboration, CERN Report No. CMS-PAS-HIN-15-005, 2015

  66. 66.

    CMS Collaboration, Phys. Lett. B 782 474 (2018)

  67. 67.

    CMS Collaboration, Phys. Rev. Lett. 119 152301 (2017)

  68. 68.

    S. Gasirowicz, M. Neumann, R.J. Riddel, Phys. Rev. 101, 922 (1965)

    ADS  Google Scholar 

  69. 69.

    A.G. Sitenko, Electromagnetic Fluctuations in Plasma (Academic Press, New York, 1967)

    Google Scholar 

  70. 70.

    A.I. Akhiezer et al., Plasma Electrodynamics (Pergamon Press, Oxford, 1975)

    Google Scholar 

  71. 71.

    G. Kalman, A. Ron, Ann. Phys. 16, 118 (1961)

    ADS  Google Scholar 

  72. 72.

    W.B. Thompson, J. Hubbard, Rev. Mod. Phys. 32, 714 (1960)

    ADS  Google Scholar 

  73. 73.

    S. Ichimaru, Basic Principles of Plasma Physics (Benjamin, Reading, 1973)

    Google Scholar 

  74. 74.

    E. Wang, X. Wang, Phys. Rev. Lett. 87, 142301 (2001)

    ADS  Google Scholar 

  75. 75.

    P. Chakraborty, M.G. Mustafa, M.H. Thoma, Phys. Rev. C 75, 064908 (2007)

    ADS  Google Scholar 

  76. 76.

    A.I. Sheikh, Z. Ahammed, Nucl. Phys. A 986, 48 (2019)

    ADS  Google Scholar 

  77. 77.

    A.I. Sheikh, Z. Ahammed, P. Shukla, M.G. Mustafa, Phys. Rev. C 98, 034915 (2018)

    ADS  Google Scholar 

  78. 78.

    I. Karpenko, P. Huovinen, M. Bleicher, Comput. Phys. Commun. 185, 3016 (2014)

    ADS  Google Scholar 

  79. 79.

    M. Chojnacki, A. Kisiel, W. Florkowski, W. Broniowski, Comput. Phys. Commun. 183, 746 (2012)

    ADS  Google Scholar 

  80. 80.

    M.G. Mustafa, Phys. Rev. C 72, 014905 (2005)

    ADS  Google Scholar 

  81. 81.

    S.K. Das, J. Alam, P. Mohanty, Phys. Rev. C 82, 014908 (2010)

    ADS  Google Scholar 

  82. 82.

    H.L. Lai, M. Guzzi, J. Huston, Z. Li, P.M. Nodolsky, J. Pumplin, C.-P. Yuan, Phys. Rev. D 82, 074024 (2010)

    ADS  Google Scholar 

  83. 83.

    K.J. Eskola, H. Paukkunen, C.A. Salgado, J. High Energy Phys. 04, 065 (2009)

    ADS  Google Scholar 

  84. 84.

    C. Peterson, D. Schlatter, I. Schmitt, P.M. Zerwas, Phys. Rev. D 27, 105 (1983)

    ADS  Google Scholar 

  85. 85.

    K. Saraswat, P. Shukla, V. Kumar, V. Singh, Nucl. Phys. A 961, 169 (2017)

    ADS  Google Scholar 

  86. 86.

    ALICE Collaboration, J. High Energy Phys. 1207 101 (2012)

  87. 87.

    ALICE Collaboration, Phys. Rev. C 90 034904 (2014)

Download references

Acknowledgements

AIS acknowledges financial support from Office of Nuclear Physics within the US DOE Office of Science, under Grant DE-FG02-89ER40531. We are very much grateful to Yuriy Karpenko for providing us the outputs of hydrodynamic evolutions. We also acknowledge Santosh K. Das, Jane Alam, Munshi G. Mustafa, Sandeep Chatterjee, Declan Keane and Prithwish Tribedy for fruitful discussions. At last but not least, we thank to the VECC grid computing team for constantly maintaining the grid facility active when the work was done.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zubayer Ahammed.

Additional information

Communicated by Ralf Rapp

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sheikh, A.I., Ahammed, Z. Heavy flavour Langevin diffusion with the chromo-electromagnetic field fluctuations in the quark–gluon plasma. Eur. Phys. J. A 56, 217 (2020). https://doi.org/10.1140/epja/s10050-020-00220-x

Download citation