Multiple chiral bands in \(^{137}\)Nd

Abstract

Two new bands have been identified in \(^{137}\)Nd from a high-statistics JUROGAM II gamma-ray spectroscopy experiment. Constrained density functional theory and particle rotor model calculations are used to assign configurations and investigate the band properties, which are well described and understood. It is demonstrated that these two new bands can be interpreted as chiral partners of previously known three-quasiparticle positive- and negative-parity bands. The newly observed chiral doublet bands in \(^{137}\)Nd represent an important support to the existence of multiple chiral bands in nuclei. The present results constitute the missing stone in the series of Nd nuclei showing multiple chiral bands, which becomes the most extended sequence of odd–even and even-even nuclei presenting multiple chiral bands in the Segré chart.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There is no data to be deposited.]

References

  1. 1.

    S. Frauendorf, J. Meng, Nucl. Phys. A 617, 131 (1997)

    ADS  Article  Google Scholar 

  2. 2.

    B.W. Xiong, Y.Y. Wang, Atomic Data Nuclear Data Tables 111–112, 193 (2018)

    Google Scholar 

  3. 3.

    S. Frauendorf, nt. J. Mod. Phys. E 23, 043003 (2018)

  4. 4.

    A.A. Raduta, Prog. Part. Nucl. Phys. 90, 241 (2016)

    ADS  Article  Google Scholar 

  5. 5.

    J. Meng, P. Zhao, Physics Scripta 91, 053008 (2016)

    ADS  Article  Google Scholar 

  6. 6.

    J. Meng, Q.B. Chen, S.Q. Zhang, Physics Scripta 93, 1430016 (2014)

    Google Scholar 

  7. 7.

    J. Meng, S.Q. Zhang, J. Phys. G 37, 064025 (2010)

    ADS  Article  Google Scholar 

  8. 8.

    C.M. Petrache et al., Phys. Rev. C 94, 064309 (2016)

    ADS  Article  Google Scholar 

  9. 9.

    A.D. Ayangeakaa et al., Phys. Rev. Lett. 110, 172504 (2013)

    ADS  Article  Google Scholar 

  10. 10.

    S. Zhu et al., Phys. Rev. Lett. 91, 132501 (2003)

    ADS  Article  Google Scholar 

  11. 11.

    B.F. Lv et al., Phys. Rev. C 100, 024314 (2019)

    ADS  Article  Google Scholar 

  12. 12.

    C.M. Petrache et al., Phys. Rev. C 97, 041304(R) (2018)

    ADS  Article  Google Scholar 

  13. 13.

    Q.B. Chen, B.F. Lv, C.M. Petrache, J. Meng, Phys. Lett. B 782, 744 (2018)

    ADS  Article  Google Scholar 

  14. 14.

    C. M. Petrache, S. Frauendorf, M. Matsuzaki, R. Leguillon, T. Zerrouki, S. Lunardi, D. Bazzacco, C. A. Ur, E. Farnea, C. Rossi Alvarez, R. Venturelli, and G. de Angelis, Phys. Rev. C 86, 044321 (2012)

  15. 15.

    A.A. Raduta, A.H. Raduta, C.M. Petrache, J. Phys. G. 43, 095107 (2016)

    ADS  Article  Google Scholar 

  16. 16.

    A.A. Raduta, C.M. Raduta, A.H. Raduta, J. Phys. G. 44, 045102 (2017)

    ADS  Article  Google Scholar 

  17. 17.

    J. Meng, J. Peng, S.Q. Zhang, S.-G. Zhou, Phys. Rev. C 73, 037303 (2006)

    ADS  Article  Google Scholar 

  18. 18.

    C.M. Petrache et al., Phys. Lett. B 219, 145 (1996)

    ADS  Article  Google Scholar 

  19. 19.

    S. Lunardi, R. Venturelli, D. Bazzacco, C.M. Petrache et al., Phys. Rev. C 52, R6 (1995)

    ADS  Article  Google Scholar 

  20. 20.

    A. Kramer-Flecken, T. Morek, R.M. Lieder et al., Nucl. Instrum. Meth. A 275, 333 (1989)

    ADS  Article  Google Scholar 

  21. 21.

    C.J. Chiara et al., Phys. Rev. C 75, 054305 (2007)

    ADS  Article  Google Scholar 

  22. 22.

    C.M. Petrache et al., Phys. Rev. C 99, 041301(R) (2019)

    ADS  Article  Google Scholar 

  23. 23.

    C.M. Petrache et al., Zeit. Phys. A 352, 5 (1995)

    ADS  Article  Google Scholar 

  24. 24.

    C.M. Petrache et al., Nucl. Phys. A 617, 228 (1997)

    ADS  Article  Google Scholar 

  25. 25.

    S. Brant, C.M. Petrache, Phys. Rev. C 79, 054326 (2009)

    ADS  Article  Google Scholar 

  26. 26.

    S. Mukhopadhyay et al., Phys. Rev. Lett. 99, 172501 (2007)

    ADS  Article  Google Scholar 

  27. 27.

    J. Meng (ed.), Relativistic density functional for nuclear structure, international review of nuclear physics, vol. 10 (World Scientific, Singapore, 2016)

    Google Scholar 

  28. 28.

    B. Qi, S.Q. Zhang, J. Meng, S.Y. Wang, S. Frauendorf, Phys. Lett. B 6(75), 175 (2009)

    ADS  Article  Google Scholar 

  29. 29.

    E. Streck, Q.B. Chen, N. Kaiser, U.-G. Meissner, Phys. Rev. C 98, 044314 (2018)

    ADS  Article  Google Scholar 

  30. 30.

    B.F. Lv et al., Phys. Rev. C 98, 044304 (2018)

    ADS  Article  Google Scholar 

  31. 31.

    C.M. Petrache et al., Phys. Rev. C 100, 054319 (2019)

    ADS  Article  Google Scholar 

  32. 32.

    P.J. Nolan, F.A. Beck, D.B. Fossan, Annu. Rev. Nucl. Part. Sci. 99, 561 (1994)

    ADS  Article  Google Scholar 

  33. 33.

    I.H. Lazarus et al., IEEE Trans. Nucl. Sci. 48, 567 (2001)

    ADS  Article  Google Scholar 

  34. 34.

    P. Rahkila, Nucl. Instrum. Meth. Phys. Res. A 595, 637 (2008)

    ADS  Article  Google Scholar 

  35. 35.

    D. Radford, Nucl. Instrum. Meth. Phys. Res. A 361, 297 (1995)

    ADS  Article  Google Scholar 

  36. 36.

    D. Radford, Nucl. Instrum. Meth. Phys. Res. A 361, 306 (1995)

    ADS  Article  Google Scholar 

  37. 37.

    P.W. Zhao, Z.P. Li, J.M. Yao, J. Meng, Phys. Rev. C 82, 054319 (2010)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Academy of Finland under the Finnish Centre of Excellence Programme (2012–2017); by the EU 7th Framework Programme Project No. 262010 (ENSAR); by the National Key R&D Program of China (Contract No. 2018YFA0404400 and No. 2017YFE0116700), by the National Natural Science Foundation of China (Grants No. 11621131001 and No. 11875075); by the GINOP-2.3.3-15-2016-00034, National Research, Development and Innovation Office NKFIH, Contracts No. PD 124717 and K128947; by the Polish National Science Centre (NCN) Grant No. 2013/10/M/ST2/00427; by the Swedish Research Council under Grant No. 621-2014-5558; and by the National Natural Science Foundation of China (Grants No. 11505242, No. 11305220, No. U1732139, No. 11775274, and No. 11575255), and by the National Sciences and Engineering Research of Canada. The use of germanium detectors from the GAMMAPOOL is acknowledged. The work of Q.B.C. is supported by Deutsche Forschungsgemeinschaft (DFG) and National Natural Science Foundation of China (NSFC) through funds provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD” (DFG Grant No.  TRR110 and NSFC Grant No. 11621131001). I.K. was supported by National Research, Development and Innovation Office NKFIH, contract number PD 124717. The authors are indebted to M. Loriggiola for his help in target preparation.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to C. M. Petrache or B. F. Lv.

Additional information

Communicated by Navin Alahari

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Petrache, C.M., Lv, B.F., Chen, Q.B. et al. Multiple chiral bands in \(^{137}\)Nd. Eur. Phys. J. A 56, 208 (2020). https://doi.org/10.1140/epja/s10050-020-00218-5

Download citation