Finite temperature QCD with \(N_f=2+1+1\) Wilson twisted mass fermions at physical pion, strange and charm masses


We discuss recent progress in studying Quantum Chromodynamics at finite temperature using \(N_f=2+1+1\) Wilson twisted mass fermions. Particular interest is in QCD symmetries and their breaking and restoration. First, we discuss the behaviour of the \(\eta '\) meson at finite temperature, which is tightly connected to the axial and chiral symmetries. The results suggest a small decrease of the \(\eta '\) mass in the pseudo-critical region coming close to the non-anomalous contribution and subsequent growth at large temperatures. Second, we present the first results of lattice simulations of Quantum Chromodynamics with \(N_f=2+1+1\) twisted mass Wilson fermions at physical pion, strange and charm masses. We estimate the chiral pseudo-critical temperatures for different observables. Our preliminary results are consistent with a second order transition in the chiral limit, however other scenarios are not excluded.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Please note that new data of this manuscript is presented in the Table 2.]


  1. 1.

    W. Busza, K. Rajagopal, W. van der Schee, Heavy ion collisions: the big picture, and the big questions. Ann. Rev. Nucl. Part. Sci. 68, 339–376 (2018)

    ADS  Article  Google Scholar 

  2. 2.

    H.-T. Ding, New developments in lattice QCD on equilibrium physics and phase diagram. In 28th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions, p. 2 (2020)

  3. 3.

    O. Philipsen. Constraining the QCD phase diagram at finite temperature and density. In 37th International Symposium on Lattice Field Theory (Lattice 2019) Wuhan, Hubei, China, June 16-22, 2019, (2019)

  4. 4.

    Sz Borsanyi et al., Calculation of the axion mass based on high-temperature lattice quantum chromodynamics. Nature 539(7627), 69–71 (2016)

    ADS  Article  Google Scholar 

  5. 5.

    A. Bazavov et al., Chiral crossover in QCD at zero and non-zero chemical potentials. Phys. Lett. B 795, 15–21 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    P. Steinbrecher, The QCD crossover at zero and non-zero baryon densities from Lattice QCD. Nucl. Phys. A 982, 847–850 (2019)

    ADS  Article  Google Scholar 

  7. 7.

    Y. Aoki et al., The Order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature 443, 675–678 (2006)

    ADS  Article  Google Scholar 

  8. 8.

    E.V. Shuryak, Which chiral symmetry is restored in hot QCD? Comments Nucl. Part. Phys. 21(4), 235–248 (1994)

    Google Scholar 

  9. 9.

    A.Y. Kotov, M.P. Lombardo, A.M. Trunin, Fate of the \(\eta ^{\prime }\) in the quark gluon plasma. Phys. Lett. B 794, 83–88 (2019)

    ADS  Article  Google Scholar 

  10. 10.

    R.D. Pisarski, F. Wilczek, Remarks on the Chiral Phase Transition in Chromodynamics. Phys. Rev. D 29, 338–341 (1984)

    ADS  Article  Google Scholar 

  11. 11.

    A. Pelissetto, E. Vicari, Relevance of the axial anomaly at the finite-temperature chiral transition in QCD. Phys. Rev. D 88(10), 105018 (2013)

    ADS  Article  Google Scholar 

  12. 12.

    H.T. Ding et al., Chiral Phase Transition Temperature in (2+1)-Flavor QCD. Phys. Rev. Lett. 123(6), 062002 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    C. Rohrhofer et al., Symmetries of spatial meson correlators in high temperature QCD. Phys. Rev. D 100(1), 014502 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    A. Alexandru, I. Horváth, Possible new phase of thermal QCD. Phys. Rev. D 100(9), 094507 (2019)

    ADS  Article  Google Scholar 

  15. 15.

    N. Carrasco et al., Up, down, strange and charm quark masses with \(\text{ N}_f\) = 2+1+1 twisted mass lattice QCD. Nucl. Phys. B 887, 19–68 (2014)

    ADS  Article  Google Scholar 

  16. 16.

    C. Alexandrou et al., Simulating twisted mass fermions at physical light, strange and charm quark masses. Phys. Rev. D 98(5), 054518 (2018)

    ADS  Article  Google Scholar 

  17. 17.

    G. Bergner et al, Quark masses and decay constants in \(N_f=2+1+1\) isoQCD with Wilson clover twisted mass fermions. In 37th International Symposium on Lattice Field Theory, p. 1 (2020)

  18. 18.

    K. Ottnad, C. Urbach, Flavor-singlet meson decay constants from \(N_f=2+1+1\) twisted mass lattice QCD. Phys. Rev. D 97(5), 054508 (2018)

    ADS  Article  Google Scholar 

  19. 19.

    G’t Hooft, Symmetry breaking through Bell-Jackiw anomalies. Phys. Rev. Lett. 37, 8–11 (1976)

    ADS  Article  Google Scholar 

  20. 20.

    G. Veneziano, U(1) without instantons. Nucl. Phys. B 159, 213–224 (1979)

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    G.M. Shore, The U(1)(A) anomaly and QCD phenomenology. Lect. Notes Phys. 737, 235–288 (2008)

    ADS  MathSciNet  Article  Google Scholar 

  22. 22.

    T. Kaneko et al., Flavor-singlet mesons in N(f) = 2+1 QCD with dynamical overlap quarks. PoS LAT2009, 107 (2009)

    Google Scholar 

  23. 23.

    N.H. Christ et al., The \(\eta \) and \(\eta ^\prime \) mesons from Lattice QCD. Phys. Rev. Lett. 105, 241601 (2010)

    ADS  Article  Google Scholar 

  24. 24.

    E.B. Gregory et al., A study of the eta and eta’ mesons with improved staggered fermions. Phys. Rev. D 86, 014504 (2012)

    ADS  Article  Google Scholar 

  25. 25.

    K. Ottnad, C. Urbach, F. Zimmermann, A mixed action analysis of \(\eta \) and \(\eta ^{\prime }\) mesons. Nucl. Phys. B 896, 470–492 (2015)

    ADS  Article  Google Scholar 

  26. 26.

    H. Fukaya et al., \(\eta ^\prime \) meson mass from topological charge density correlator in QCD. Phys. Rev. D 92(11), 111501 (2015)

    ADS  Article  Google Scholar 

  27. 27.

    M. Lüscher, Properties and uses of the Wilson flow in lattice QCD. JHEP 08, 071 (2010). [Erratum: JHEP03,092(2014)]

    ADS  MathSciNet  Article  Google Scholar 

  28. 28.

    D. Horvatić, D. Kekez, D. Klabučar, \(\eta ^{\prime }\) and \(\eta \) mesons at high T when the \(U_A\)(1) and chiral symmetry breaking are tied. Phys. Rev. D 99(1), 014007 (2019)

    ADS  Article  Google Scholar 

  29. 29.

    A. Gómez Nicola, J Ruiz De Elvira, Chiral and \(U(1)_A\) restoration for the scalar and pseudoscalar meson nonets. Phys. Rev. D 98(1), 014020 (2018)

    ADS  Article  Google Scholar 

  30. 30.

    A. Gómez Nicola, J.R. De Elvira, A. Vioque-Rodríguez, The QCD topological charge and its thermal dependence: the role of the \(\eta ^{\prime }\). JHEP 11, 086 (2019)

    MATH  Google Scholar 

  31. 31.

    M. Ishii, H. Kouno, M. Yahiro, Model prediction for temperature dependence of meson pole masses from lattice QCD results on meson screening masses. Phys. Rev. D 95(11), 114022 (2017)

    ADS  Article  Google Scholar 

  32. 32.

    M. Mitter, B.-J. Schaefer, Fluctuations and the axial anomaly with three quark flavors. Phys. Rev. D 89(5), 054027 (2014)

    ADS  Article  Google Scholar 

  33. 33.

    G. Xiao-Wei, C.-G. Duan, Z.-H. Guo, Updated study of the \(\eta \)-\(\eta ^{\prime }\) mixing and the thermal properties of light pseudoscalar mesons at low temperatures. Phys. Rev. D 98(3), 034007 (2018)

    ADS  Article  Google Scholar 

  34. 34.

    T. Bhattacharya et al., QCD phase transition with chiral Quarks and physical Quark masses. Phys. Rev. Lett. 113(8), 082001 (2014)

    ADS  Article  Google Scholar 

  35. 35.

    R. Frezzotti et al., Lattice QCD with a chirally twisted mass term. JHEP 08, 058 (2001)

    Google Scholar 

  36. 36.

    C. Alexandrou et al., Adaptive aggregation-based domain decomposition multigrid for twisted mass fermions. Phys. Rev. D 94(11), 114509 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  37. 37.

    M. Hasenbusch, K. Jansen, Speeding up lattice QCD simulations with clover improved Wilson fermions. Nucl. Phys. B 659, 299–320 (2003)

    ADS  Article  Google Scholar 

  38. 38.

    C. Alexandrou et al., Proton and neutron electromagnetic form factors from lattice QCD. Phys. Rev. D 100(1), 014509 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  39. 39.

    F. Burger et al., Chiral observables and topology in hot QCD with two families of quarks. Phys. Rev. D 98(9), 094501 (2018)

    ADS  Article  Google Scholar 

  40. 40.

    Sz Borsanyi et al., Is there still any T\_c mystery in lattice QCD? Results with physical masses in the continuum limit III. JHEP 09, 073 (2010)

    ADS  Article  Google Scholar 

  41. 41.

    G. Aarts et al. Spectral quantities in thermal QCD: a progress report from the FASTSUM collaboration. In 37th International Symposium on Lattice Field Theory, (2019)

  42. 42.

    U. Wolff, Monte Carlo errors with less errors. Comput. Phys. Commun. 156, 143–153 (2004). [Erratum: Comput. Phys. Commun.176,383(2007)]

    ADS  Article  Google Scholar 

  43. 43.

    A.Y. Kotov, M.P. Lombardo, A.M. Trunin. In preparation (2020)

Download references


It is a pleasure to thank Roberto Frezzotti for useful conversation on twisted mass Wilson fermions. A.M.T. acknowledges support from the “BASIS” foundation. A.Yu.K. acknowledges the hospitality of the Galileo Galilei Institute for Theoretical Physics and the support of the European COST Action CA15213 “Theory of hot matter and relativistic heavy-ion collisions” (THOR). The work of A.Yu.K. was also supported by RFBR grant 18-02-40126. M.P.L. acknowledges the hospitality of the Joint Institute for Nuclear Research. Numerical simulations have been carried out using computing resources of CINECA (agreement INFN-CINECA and ISCRA project IsB20), the supercomputer of Joint Institute for Nuclear Research “Govorun” and the computing resources of the federal collective usage center Complex for Simulation and Data Processing for Mega-science Facilities at NRC “Kurchatov Institute”,

Author information



Corresponding author

Correspondence to Andrey Yu. Kotov.

Additional information

Communicated by Laura Tolos.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kotov, A.Y., Lombardo, M.P. & Trunin, A.M. Finite temperature QCD with \(N_f=2+1+1\) Wilson twisted mass fermions at physical pion, strange and charm masses. Eur. Phys. J. A 56, 203 (2020).

Download citation