Excitation functions and thick target yields of the \(^{\mathrm {nat}}\hbox {Zr}(\hbox {p},\hbox {x})^{{95}}\hbox {Zr}\), \(^{95\mathrm {m}}\hbox {Nb}\), \(^{95\mathrm {g}}\hbox {Nb}\) reactions


We measured the excitation functions for the production of the radionuclides \(^{{95}}\hbox {Zr}\), \(^{95\mathrm {m}}\hbox {Nb}\) and \(^{95\mathrm {g}}\hbox {Nb}\) from the \(^{\mathrm {nat}}\hbox {Zr}(\hbox {p},\hbox {x})\) reactions in the proton energy range of 10.6–43.6 MeV. The experiment was performed by irradiation of zirconium and copper foils simultaneously using 45 MeV proton beam from the MC-50 Cyclotron at the Korea Institute of Radiological and Medical Sciences, Korea, and the induced activity was measured with an HPGe \(\upgamma \)-ray detector. Proton energies along the foil stack were calculated using the computer code SRIM-2013. The proton beam flux entered each foil was determined via the \(^{\mathrm {nat}}\hbox {Cu}(\hbox {p},\hbox {x})^{{62}}\hbox {Zn}\) and \(^{\mathrm {nat}}\hbox {Cu}(\hbox {p},\hbox {x})^{{65}}\hbox {Zn}\) monitoring reactions. The cumulative cross sections of the \(^{\mathrm {nat}}\hbox {Zr}(\hbox {p},\hbox {x})^{{95}}\hbox {Zr}\) reaction were measured because it was unable to separate the activity from the decay of \(^{{95}}\hbox {Y}\) to \(^{{95}}\hbox {Zr}\). However, independent cross sections of the \(^{\mathrm {nat}}\hbox {Zr}(\hbox {p},\hbox {x})^{95\mathrm {m}}\hbox {Nb}\) and \(^{\mathrm {nat}}\hbox {Zr}(\hbox {p},\hbox {x})^{95\mathrm {g}}\hbox {Nb}\) reactions were determined, since the independent activities of \(^{95\mathrm {m}}\hbox {Nb}\) and \(^{95\mathrm {g}}\hbox {Nb}\) can also be measured. In addition, the thick target yields of the \(^{{95}}\hbox {Zr}\), \(^{95\mathrm {m}}\hbox {Nb}\) and \(^{95\mathrm {g}}\hbox {Nb}\) isotopes were also determined. The current results are compared with the previously measured data as well as with the theoretical values from the TALYS-1.9 code and the TENDL-2019 data library.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data used in this paper are deposited in the EXFOR data library and TENDL-2019 data library, and the data produced during this study will be deposited in the EXFOR data library.]


  1. 1.

    R. Krishnan, M.K. Asumdi, Proc. Indian Acad. Sci. 4, 44 (1981)

    Google Scholar 

  2. 2.

    M.V. Glazoff, Modeling of some physical properties of zirconium alloys for nuclear applications in support of UED campaign, August 2013, Idaho National Laboratory UFD Campaign, Idaho Fall, Idaho 83415, available from https://www.www.inl.gov

  3. 3.

    D.O. Northwood, Mater. Des. 6, 58 (1985). https://doi.org/10.1016/2061-3069(85)90165-7

    Article  Google Scholar 

  4. 4.

    S. Pomme, S.M. Collins, Unbiased equations for 95Zr–95Nb chronometry. Appl. Radiat. Isot. 90, 234 (2014)

    Article  Google Scholar 

  5. 5.

    Y. Kasamatsu, A. Toyoshima, H. Toume, K. Tsukada, H. Haba, Y. Nagame, J. Nucl. Radiochem. Sci. 8, 69 (2007)

    Article  Google Scholar 

  6. 6.

    V. Radchenko, P. Bouziotis, T. Tsotakos, M. Paravatou-Petsotas, Ad la Fuente, G. Loudos, A.L. Harris, S. Xanthopoulos, D. Filosofov, H. Hauser, M. Eisenhut, B. Ponsard, F. Roesch, Nucl. Med. Biol. 43, 280 (2016)

    Article  Google Scholar 

  7. 7.

    S.C. Yang, M.H. Jung, G.N. Kim, Y.O. Lee, Nucl. Instrum. Methods B 436, 179 (2018)

    ADS  Article  Google Scholar 

  8. 8.

    F. Szelecsényi, G.F. Steyn, Z. Kovács, C. Vermeulen, K. Nagatsu, M.R. Zhang, K. Suzuki, Nucl. Instrum. Methods B 343, 173 (2015)

    ADS  Article  Google Scholar 

  9. 9.

    F. Tárkányi, F. Ditrói, S. Takács, A. Hermanne, M. Al-Abyad, H. Yamazaki, M. Baba, M.A. Mohammad, Appl. Radiat. Isot. 97, 149 (2015)

    Article  Google Scholar 

  10. 10.

    M. Murakami, H. Haba, S. Goto, J. Kanaya, H. Kudo, Appl. Radiat. Isot. 90, 149 (2014)

    Article  Google Scholar 

  11. 11.

    R. Michel, R. Bodemann, H. Busemann, R. Daunke, M. Gloris, H.-J. Lange, B. Klug, A. Krins, I. Leya, M. Lupke, S. Neumann, H. Reinhardt, M. Schnatz-Biittgen, U. Herpers, Th Schiekel, F. Sudbrock, B. Holmqvist, H. Condé, P. Malmborg, M. Suter, B. Dittrich-Hannen, P.-W. Kubik, H.-A. Synal, D. Filges, Nucl. Instrum. Methods B. 129, 153 (1997)

    ADS  Article  Google Scholar 

  12. 12.

    M. Al-Abyad, A.S. Abdel-Hamid, F. Tárkányi, F. Ditrói, S. Takács, U. Seddik, I.I. Bashter, Appl. Radiat. Isot. 70, 257 (2012)

    Article  Google Scholar 

  13. 13.

    M.S. Uddin, M.U. Khandaker, K.S. Kim, Y.S. Lee, M.W. Lee, G.N. Kim, Nucl. Instrum. Methods B 266, 13 (2008)

    ADS  Article  Google Scholar 

  14. 14.

    O.N. Vysotskij, A.V. Gonchar, O.K. Gorpinich, S.N. Kondrat’ev, V.S. Prokopenko, S.B. Rakitin, V.D. Sklyarenko, V.V. Tokarevskij, in Proceedings of 41th Conferences on Nuclear Spectroscopy and Nuclear Structure, Minsk, Belarus, p. 486 (1991)

  15. 15.

    B. Lawriniang, S. Badwar, R. Ghosh, B. Jyrwa, H. Naik, S.V. Suryanarayana, Y.P. Naik, Eur. Phys. J. A 54, 141 (2018)

    ADS  Article  Google Scholar 

  16. 16.

    M. Al-Abyad, G.Y. Mohamed, F. Ditrói, S. Takács, F. Tárkányi, Eur. Phys. J. A 53, 107 (2017)

    ADS  Article  Google Scholar 

  17. 17.

    S. Basunia, H.A. Shugart, A.R. Smith, E.B. Norman, Phys. Rev. C. 75, 015802 (2007)

    ADS  Article  Google Scholar 

  18. 18.

    H. Showaimy, A.H.M. Solieman, A.S. Abdel Hamid, A.M. Khalaf, Z.A. Saleh, Radiat. Phys. Chem. 157, 97 (2019)

    ADS  Article  Google Scholar 

  19. 19.

    B. Scholten, R.M. Lambrecht, M. Cogneau, H.V. Ruiz, S.M. Qaim, Appl. Radiat. Isot. 51, 69 (1999)

    Article  Google Scholar 

  20. 20.

    Nudat 2.7- National Nuclear Data Center, Brookhaven National Laboratory, available from http://www.nndc.bnl.gov/nudat2/

  21. 21.

    N.V. Do, N.T. Luan, N.T. Xuan, N.T. Hien, G.N. Kim, K.S. Kim, J. Radioanal. Nucl. Chem. 32, 117 (2019)

    Google Scholar 

  22. 22.

    M.U. Khandaker, A.K.M.M.H. Meaze, K.S. Kim, D.C. Son, G.N. Kim, J. Korean. Phys. Soc. 48, 821 (2006)

    Google Scholar 

  23. 23.

    J.F. Ziegler, SRIM-2003. Nucl. Instrum. Methods B 219–220, 1027 (2004)

    ADS  Article  Google Scholar 

  24. 24.

    J. F. Ziegler, J. P. Biersack, U. Littmark (2003) SRIM 2003 code, Version 96.xx. The Stopping and Range of Ions in Solids. Pergamon, New York, available from http://www.srim.org/

  25. 25.

    S.M. Qaim, F. Tárkányi, P. Obložinský, K. Gul, A. Hermanne, M.G. Mustafa, F.M. Nortier, B. Scholten, Y. Shubin, S. Takács, Y. Zhuang, IAEA-TECDOC-1211, Vienna (2001). Available from http://wwwnds.iaea.org/medical/

  26. 26.

    H. Zaneb, M. Hussain, N. Amjed, S.M. Qaim, Appl. Radiat. Isot. 104, 232 (2015)

    Article  Google Scholar 

  27. 27.

    TALYS-1.9: A.J. Koning, S. Hilaire, S. Goriely, TALYS user manual, A nuclear reaction program, NRG-1755 ZG PETTEN (The Netherlands, 2017), available from https://tendl.web.psi.ch/tendl_2019/talys.html

  28. 28.

    S.Y.F. Chu, L.P. Ekström, R.B. Ferestone, The Lund/LBNL Nuclear Data Search, Vesion 2.0, February 1999. http://nucleardata.nuclear.lu.se/nucleardata/toi/ (1999)

  29. 29.

    N.N. Krasnov, Appl. Radiat. Isot. 25, 223 (1974)

    Article  Google Scholar 

  30. 30.

    N. Otuka, S. Takács, Radiochim. Acta. 103, 1 (2015)

    ADS  Article  Google Scholar 

  31. 31.

    M. Sitarz, K. Szkliniarz, J. Jastrzębski, J. Choiński, A. Guertin, F. Haddad, A. Jakubowski, K. Kapinos, M. Kisieliński, A. Majkowska, E. Nigron, M. Rostampour, A. Stolarz, A. Trzcińska, R. Walczak, J. Wojtkowska, W. Zipper, A. Bilewicz, Appl. Radiat. Isot. 142, 104 (2018)

    Article  Google Scholar 

  32. 32.

    TENDL-2019: TALYS-based evaluated nuclear data library (2019). Available from https://tendl.web.psi.ch/tendl_2019/tendl2019.html

  33. 33.

    N.T. Hien, N.V. Do, N.T. Luan, G.N. Kim, K.S. Kim, MdS Uddind, H. Naik, Nucl. Instrum. Methods B 429, 1 (2018)

    ADS  Article  Google Scholar 

  34. 34.

    P. P. Dmitriev, G.A. Molin, in International nuclear data committee, INDC (CPP)-188/L (1982), translated from Nuclear Constants 5(44), 43 (1981)

  35. 35.

    I.O. Konstantinov, P.P. Dmitriev, V.I. Bolotskikh, Sov. Atom. Energy 60, 390 (1986)

    Article  Google Scholar 

Download references


The authors express their sincere thanks to the staff of the MC-50 Cyclotron Laboratory in the Korea Institute of Radiological and Medical Sciences (KIRAMS), Korea for the excellent operation and their support during the experiment. This research was partly supported by the National Research Foundation of Korea through a Grant provided by the Ministry of Science and ICT (NRF-2017R1D1A1B03030484, NRF2013M7A1A1075764, and NRF-2018R1A6A1A06024970) and by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 103.04-2018.314.

Author information



Corresponding author

Correspondence to Guinyun Kim.

Additional information

Communicated by Robert Janssens.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nguyen, V.D., Nguyen, T.L., Nguyen, T.H. et al. Excitation functions and thick target yields of the \(^{\mathrm {nat}}\hbox {Zr}(\hbox {p},\hbox {x})^{{95}}\hbox {Zr}\), \(^{95\mathrm {m}}\hbox {Nb}\), \(^{95\mathrm {g}}\hbox {Nb}\) reactions. Eur. Phys. J. A 56, 194 (2020). https://doi.org/10.1140/epja/s10050-020-00199-5

Download citation