Skip to main content
Log in

Scission point model applied to \(^{181} \hbox {Re}^{*}\) formed in \(^{12}{} \mathbf{C}+^{169}\)Tm reaction

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

An scission point model improved by including angular momentum effects is used to study the recently reported heavy-ion-induced fission of \(^{181} \hbox {Re}^*\) formed in the \(^{12}\)C+\(^{169}\)Tm reaction at three different lab energies, especially to estimate the fragment cross section. The fission is characterized as a two-stage process. Through energy balance criteria the scission point for each fragmentation is identified in the first stage. The respective formation probability is calculated using deformed Nilsson single-particle levels. The WKB approximation is used to determine the probability of fragments to penetrate the potential barrier in the second stage. Using partial wave analysis, the cross section is calculated. The yield values exhibit a clear demarcation of the asymmetric and symmetric regions. The cross section values are found to have a strong dependence on the scission distance. With the proper choice of scission distance, the model could account for the observed cross section properties of \(^{181} \hbox {Re}^*\). The calculated cross section values are found to agree with experimental data, at least in the symmetric division. In addition to mass distribution and cross section calculations, the model can be exploited to study other fission observables too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The binary fission studies of excited \(^{181} {\hbox {Re}}\) nucleus using the angular momentum dependent scission point model are reported as figures. All data generated during this study are contained in this article.].

Notes

  1. The general notation for Lagrangian multiplier \(\gamma \) in [29] is changed to \(\varUpsilon \) to differentiate from the nuclear surface tension coefficient used in the proximity potential calculation.

  2. \(\beta \) used in [29] to denote a reciprocal of the temperature is replaced with \(\beta _T\) to differentiate with deformation parameter.

References

  1. H.L. Hall, D.C. Hoffman, J. Radioanal. Nucl. Chem. 142, 53 (1990)

    Article  Google Scholar 

  2. B.B. Back, O. Hansen, H.C. Britt, J.D. Garrett, Phys. Rev. C 9, 1924 (1974)

    Article  ADS  Google Scholar 

  3. Y. Oganessian, J. Phys. G Nucl. Particle Phys. 34, R165 (2007)

    Article  ADS  Google Scholar 

  4. B. Wilkins, E. Steinberg, Phys. Lett. B 42, 141 (1972)

    Article  ADS  Google Scholar 

  5. B.D. Wilkins, E.P. Steinberg, R.R. Chasman, Phys. Rev. C 14, 1832 (1976)

    Article  ADS  Google Scholar 

  6. J.F. Lemaître, S. Panebianco, J.L. Sida, S. Hilaire, S. Heinrich, Phys. Rev. C 92, 034617 (2015)

    Article  ADS  Google Scholar 

  7. C. Karthika, M. Balasubramaniam, Eur. Phys. J. A 55, 59 (2019)

    Article  ADS  Google Scholar 

  8. A.V. Karpov, P.N. Nadtochy, E.G. Ryabov, G.D. Adeev, J. Phys. G Nucl. Particle Phys. 29, 2365 (2003)

    Article  ADS  Google Scholar 

  9. H. Goutte, J.F. Berger, P. Casoli, D. Gogny, Phys. Rev. C 71, 024316 (2005)

    Article  ADS  Google Scholar 

  10. P. Möller, D.G. Madland, A.J. Sierk, A. Iwamoto, Nature 409, 785 (2001)

    Article  ADS  Google Scholar 

  11. A.V. Andreev, G.G. Adamian, N.V. Antonenko, Phys. Rev. C 86, 044315 (2012)

    Article  ADS  Google Scholar 

  12. A. Sood, P.P. Singh, R.N. Sahoo, P. Kumar, A. Yadav, V.R. Sharma, M. Shuaib, M.K. Sharma, D.P. Singh, U. Gupta et al., Phys. Rev. C 96, 014620 (2017)

    Article  ADS  Google Scholar 

  13. C. Kokila, M. Balasubramaniam, Phys. Rev. C 101, 014614 (2020)

    Article  ADS  Google Scholar 

  14. A.V. Andreev, G.G. Adamian, N.V. Antonenko, S.P. Ivanova, W. Scheid, Eur. Phys. J. A 22, 51 (2004)

    Article  ADS  Google Scholar 

  15. A.V. Andreev, G.G. Adamian, N.V. Antonenko, S.P. Ivanova, W. Scheid, Acta Phys. Hungarica Ser. A Heavy Ion Phys. 22, 3 (2005)

    Article  ADS  Google Scholar 

  16. V.Y. Denisov, N.A. Pilipenko, I.Y. Sedykh, Phys. Rev. C 95, 014605 (2017)

    Article  ADS  Google Scholar 

  17. G. Scamps, C. Simenel, Nature 564, 382 (2018)

    Article  ADS  Google Scholar 

  18. A. Bulgac, S. Jin, K.J. Roche, N. Schunck, I. Stetcu, Phys. Rev. C 100, 34615 (2019)

    Article  ADS  Google Scholar 

  19. M. Wang, G. Audi, F. Kondev, W. Huang, S. Naimi, X. Xu, Chin. Phys. C 41, 030003 (2017)

    Article  ADS  Google Scholar 

  20. I. Ragnarsson, S. Nilsson, Shapes and Shells in Nuclear Structure (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  21. W.D. Myers, W.J. Swiatecki, Ark. Fys. 36, 343 (1967)

    Google Scholar 

  22. K. Krane, Introductory Nuclear Physics (Wiley, Hoboken, 1987)

    Google Scholar 

  23. M. Bolsterli, E.O. Fiset, J.R. Nix, J.L. Norton, Phys. Rev. C 5, 1050 (1972)

    Article  ADS  Google Scholar 

  24. Y. Gambhir, Mean Field Description of Nuclei (Narosa Pub., 2006), ISBN 9788173197086, https://books.google.co.in/books?id=X8Hrb9e-gMkC (2006)

  25. V.Y. Denisov, N.A. Pilipenko, Phys. Rev. C 76, 014602 (2007)

    Article  ADS  Google Scholar 

  26. V.Y. Denisov, Phys. Rev. C 91, 024603 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  27. J. Blocki, J. Randrup, W. Swiatecki, C. Tsang, Ann. Phys. 105, 427 (1977)

    Article  ADS  Google Scholar 

  28. M. Rajasekaran, V. Devanathan, Phys. Rev. C 24, 2606 (1981)

    Article  ADS  Google Scholar 

  29. N. Arunachalam, P.A. Periyanayaki, K. Ilangovan, Phys. Rev. C 55, 1826 (1997)

    Article  ADS  Google Scholar 

  30. H.A. Bethe, Rev. Mod. Phys. 9, 69 (1937)

    Article  ADS  Google Scholar 

  31. K.L. Couteur, D. Lang, Nucl. Phys. 13, 32 (1959)

    Article  Google Scholar 

  32. R.K. Gupta, M. Balasubramaniam, C. Mazzocchi, M. La Commara, W. Scheid, Phys. Rev. C 65, 024601 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors CK acknowledges the financial support received in the form of JRF by Council of Scientific and Industrial Research, Govt. of India vide sanction No. 03 (1455)/19/EMR-II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Balasubramaniam.

Additional information

Communicated by Cedric Simenel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthika, C., Balasubramaniam, M. Scission point model applied to \(^{181} \hbox {Re}^{*}\) formed in \(^{12}{} \mathbf{C}+^{169}\)Tm reaction. Eur. Phys. J. A 56, 148 (2020). https://doi.org/10.1140/epja/s10050-020-00158-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00158-0

Navigation