Skip to main content
Log in

First comparison of GEANT4 hadrontherapy physics model with experimental data for a NUMEN project reaction case

  • Regular Article – Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript


Gamma-ray and neutron spectra from the \(^{18}\hbox {O }{+}^{76} \hbox {Se}\) reaction at 15.3 MeV/u were measured with the EDEN array of liquid scintillators at the LNS. The results were compared to GEANT Hadrontherapy physics list simulations in order to assess the reliability of this model for the development of the NUMEN project. A good agreement with the shape of the experimental gamma-ray spectra and a reasonable agreement with the total count rates were obtained. The gamma spectra originated from the nuclear reactions were selected by time coincidence with the Superconducting Cyclotron radio-frequency reference signal. The random coincidence background rate was appropriately described only when the Faraday Cup, the material and geometry of the experimental hall and its contents were included in the simulation with sufficient detail. The information on the radiation spectra is important for the adequate development of the project of the detector arrays and electronic equipment for the advanced phase of NUMEN. Since orders of magnitude larger beam intensities are planned for this phase, the random coincidence rate is also of significant importance, particularly for the performance of the G-NUMEN gamma calorimeter array.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data can be made available uppon request, together with explanations of their acquisition conditions.]”.


  1. F. Cappuzzello et al., Eur. Phys. J. A 54, 72 (2018)

    Article  ADS  Google Scholar 

  2. H. Lenske et al., Prog. Part. Nucl. Phys. 109, 103716 (2019)

    Article  Google Scholar 

  3. L. Calabretta et al., Mod. Phys. Lett. A 32, 17 (2017)

    Article  Google Scholar 

  4. F. Iazzi et al., WIT Trans. Eng. Sci. 116, 61 (2017)

    Article  Google Scholar 

  5. F. Pinna, D. Calvo, V. Capirossi, F. Delaunay, M. Fisichella, F. Iazzi, R. Introzzi, Il Nuovo Cimento 42C, 67 (2019)

    Google Scholar 

  6. A. Muoio et al., Eur. Phys. J. Web Conf. 117, 10006 (2016)

    Article  Google Scholar 

  7. S. Tudisco et al., Sensors 18(7), 2289 (2018)

    Article  Google Scholar 

  8. C. Ciampi, et al., NIMA Vol. 925 (2019) Nuclear Instum. Meth. A 925, 60 (2019)

  9. D. Carbone et al., Results Phys. 6, 863 (2016)

    Article  ADS  Google Scholar 

  10. J.R.B. Oliveira et al., J. Phys. Conf. Ser. 1056, 012040 (2018)

    Article  Google Scholar 

  11. F. Cappuzzello et al., Eur. Phys. J. A 52, 167 (2016)

    Article  ADS  Google Scholar 

  12. H. Laurent, H. Lefort, D. Beaumel, Y. Blumenfeld, S. Fortier, S. Galès, J. Guillot, J.C. Roynette, P. Volkov, Nucl. Instrum. Meth. A 326, 517 (1993)

    Article  ADS  Google Scholar 

  13. M. Cavallaro et al., Nucl. Instrum. Meth. A 700, 65 (2013)

    Article  ADS  Google Scholar 

  14. M. Cavallaro et al., Phys. Rev. C 93, 064323 (2016)

    Article  ADS  Google Scholar 

  15. M. Cavallaro et al., Nucl. Instrum. Methods B 463, 334 (2020)

    Article  ADS  Google Scholar 

  16. M. Cecconello, M. Donato, C. Marini-Bettolo, S. Conroy, S. Sangaroon, G. Ericsson, Nucl. Instrum. Methods A 753, 34 (2014)

    Article  ADS  Google Scholar 

  17. S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)

    Article  ADS  Google Scholar 

  18. J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006)

    Article  ADS  Google Scholar 

  19. J. Allison et al., Nucl. Instrum. Methods A 835, 186 (2016)

    Article  ADS  Google Scholar 

  20. R. Brun, F. Rademakers, Nucl. Instrum. Methods A 389, 81 (1997)

    Article  ADS  Google Scholar 

  21. M. Tanabashi et al., Particle Data Group. Phys. Rev. D 98, 030001 (2018)

    Article  ADS  Google Scholar 

  22. Zachary S. Hartwig, Peter Gumplinger, Nucl. Instrum. Methods A 737, 155 (2014)

    Article  ADS  Google Scholar 

  23. J. Scherzinger, R. Al Jebali, J.R.M. Annand, K.G. Fissum, R. Hall-Wilton, K. Kanaki, M. Lundin, B. Nilsson, H. Perrey, A. Rosborg, H. Svensson, Nucl. Instrum. Methods A 840, 121 (2016)

    Article  ADS  Google Scholar 

  24. G. Folger, V.N. Ivanchenko, J.P. Wellisch, Eur. Phys. J. A 21, 407 (2004)

    Article  ADS  Google Scholar 

  25. J. Dudouet, D. Cussol, D. Durand, M. Labalme, Phys. Rev. C 89, 054616 (2014)

    Article  ADS  Google Scholar 

  26. M. De Napoli, F. Romano, D. D’Urso, T. Licciardello, C. Agodi, G. Candiano, F. Cappuzzello, G.A.P. Cirrone, G. Cuttone, A. Musumarra, L. Pandola, V. Scuderi, Phys. Med. Biol. 59, 7643 (2014)

    Article  Google Scholar 

  27. D. Bolst, G.A.P. Cirrone, G. Cuttone, G. Folger, S. Incerti, V. Ivanchenko, T. Koi, D. Mancusi, L. Pandola, F. Romano, A.B. Rosenfeld, S. Guatelli, Nucl. Instrum. Methods A 869, 68 (2017)

    Article  ADS  Google Scholar 

  28. C. Mancini-Terracciano et al., World Congress on Medical Physics and Biomedical Engineering 2018, IFMBE Proceedings 68, 675

  29. M. Pinto, D. Dauvergne, N. Freud, J. Krimmer, J.M. Létang, E. Testa, Front. Oncol. 6, 10 (2016)

    Article  Google Scholar 

  30. C. Mancini-Terracciano et al., Phys. Med. 67, 116 (2019)

    Article  Google Scholar 

Download references


We acknowledge support from Fundação de Amparo à pesquisa no Estado de São Paulo, (FAPESP grants proc. 2016/04612-9 and 2017/50160-5), Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq and from Instituto Nacional de Ciência e Tecnologia-Física Nuclear e Aplicações (INCT-FNA, research project 464898/2014-5), Brazil.

Author information

Authors and Affiliations



Corresponding author

Correspondence to J. R. B. Oliveira.

Additional information

Communicated by Jose Benlliure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, J.R.B., Moralles, M., Flechas, D. et al. First comparison of GEANT4 hadrontherapy physics model with experimental data for a NUMEN project reaction case. Eur. Phys. J. A 56, 153 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: