Skip to main content
Log in

Negative heat capacity for hot nuclei using formulation from the microcanonical ensemble INDRA Collaboration

  • Letter to the Editor
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

By using freeze-out properties of multifragmenting hot nuclei produced in quasifusion central \(^{129}\hbox {Xe}+^{nat}\hbox {Sn}\) collisions at different beam energies (32, 39, 45 and 50 AMeV) which were estimated by means of a simulation based on experimental data collected by the \(4\pi \) INDRA multidetector, heat capacity in the thermal excitation energy range 4–12.5 AMeV was calculated from total kinetic energies and multiplicities at freeze-out. The microcanonical formulation was employed. Negative heat capacity which signs a first order phase transition for finite systems is observed and confirms previous results using a different method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There are no external data associated with the manuscript.]

References

  1. H. Schulz et al., Phys. Lett. B 119, 12 (1982)

    Article  ADS  Google Scholar 

  2. M.W. Curtin et al., Phys. Lett. B 123, 219 (1983)

    Article  Google Scholar 

  3. H.R. Jaqaman et al., Phys. Rev. C 27, 2782 (1983)

    Article  ADS  Google Scholar 

  4. H. Müller, B.D. Serot, Phys. Rev. C 52, 2072 (1995)

    Article  ADS  Google Scholar 

  5. C. Wellenhofer et al., Phys. Rev. C 89, 064009 (2014)

    Article  ADS  Google Scholar 

  6. P. Chomaz et al. (eds.), Eur. Phys. J. A 30 (2006) (references therein)

  7. B. Borderie, M.F. Rivet, Prog. Part. Nucl. Phys. 61, 551 (2008). (references therein)

    Article  ADS  Google Scholar 

  8. B. Borderie, J.D. Frankland, Prog. Part. Nucl. Phys. 105, 82 (2019)

    Article  ADS  Google Scholar 

  9. R. Wada et al., Phys. Rev. C 99, 024616 (2019)

    Article  Google Scholar 

  10. W. Lin et al., Phys. Rev. C 99, 054616 (2019)

    Article  ADS  Google Scholar 

  11. P. Labastie et al., Phys. Rev. Lett. 65, 1567 (1990)

    Article  ADS  Google Scholar 

  12. D.J. Wales et al., Phys. Rev. Lett. 73, 2875 (1994)

    Article  ADS  Google Scholar 

  13. D.H.E. Gross, Phys. Rep. 279, 119 (1997)

    Article  ADS  Google Scholar 

  14. F. Gulminelli, P. Chomaz, Phys. Rev. E 66, 046108 (2002)

    Article  ADS  Google Scholar 

  15. P. Chomaz et al., Phys. Rep. 389, 263 (2004)

    Article  ADS  Google Scholar 

  16. H. Touchette, Phys. Rep. 478, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  17. A. Campa et al., Phys. Rep. 480, 57 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. P. Chomaz et al., Phys. Rev. Lett. 85, 3587 (2000)

    Article  ADS  Google Scholar 

  19. B. Borderie et al., (INDRA Collaboration), Phys. Lett. B 723 140 (2013)

  20. M. D’Agostino et al., Phys. Lett. B 473, 219 (2000)

    Article  ADS  Google Scholar 

  21. N. Le Neindre et al., in Proceedings of the XXXVIII International Winter Meeting on Nuclear Physics, Bormio, Italy, edited by I. Iori and A. Moroni, suppl. 116 (Ricerca Scientifica ed Educazione Permanente, 2000) p. 404 (2000)

  22. B. Borderie, J. Phys. G Nucl. Part. Phys. 28, R217 (2002)

    Article  ADS  Google Scholar 

  23. N. Le Neindre et al., (INDRA Collaboration), Nucl. Phys. A 795 47 (2007)

  24. P. Chomaz et al., Phys. Rev. E 64, 046114 (2001)

    Article  ADS  Google Scholar 

  25. E. Bonnet et al., (INDRA Collaboration), Phys. Rev. Lett. 103 072701 (2009)

  26. D.L. Tubbs, S.E. Koonin, Ap. J. 232, L59 (1979)

    Article  ADS  Google Scholar 

  27. D.R. Dean, U. Mosel, Z. Phys. A 322, 647 (1985)

    Article  ADS  Google Scholar 

  28. S.E. Koonin, J. Randrup, Nucl. Phys. A 474, 173 (1987)

    Article  ADS  Google Scholar 

  29. S.R. Souza et al., Phys. Rev. C 92, 024612 (2015)

    Article  ADS  Google Scholar 

  30. S. Piantelli et al., (INDRA Collaboration), Nucl. Phys. A 809 111 (2008)

  31. P. Chomaz, F. Gulminelli, Nucl. Phys. A 647, 153 (1999)

    Article  ADS  Google Scholar 

  32. F. Gulminelli et al., Europhys. Lett. 50, 434 (2000)

    Article  ADS  Google Scholar 

  33. M. D’Agostino et al., Nucl. Phys. A 699, 795 (2002)

    Article  ADS  Google Scholar 

  34. A.H. Raduta, A.R. Raduta, Nucl. Phys. A 703, 876 (2002)

    Article  ADS  Google Scholar 

  35. A.H. Raduta, A.R. Raduta, Phys. Rev. C 61, 034611 (2000)

    Article  ADS  Google Scholar 

  36. S. Piantelli et al., (INDRA Collaboration), Phys. Lett. B 627 18 (2005)

  37. E. Bonnet et al., (INDRA Collaboration), Nucl. Phys. A 816 1 (2009)

  38. J. Pouthas et al., Nucl. Instrum. Methods Phys. Res. A 357, 418 (1995)

    Article  ADS  Google Scholar 

  39. J. Pouthas et al., Nucl. Instrum. Methods Phys. Res. A 369, 222 (1996)

    Article  ADS  Google Scholar 

  40. G. Tăbăcaru et al., (INDRA Collaboration), Nucl. Instrum. Methods Phys. Res. A 428 379 (1999)

  41. M. Pârlog et al. (INDRA Collaboration), Nucl. Instrum. Methods Phys. Res. A 482 674 (2002)

  42. M. Pârlog et al. (INDRA Collaboration), Nucl. Instrum. Methods Phys. Res. A 482 693 (2002)

  43. J.D. Frankland et al. (INDRA Collaboration), Nucl. Phys. A 689 940 (2001)

  44. Y.D. Kim et al., Phys. Rev. C 45, 338 (1992)

    Article  ADS  Google Scholar 

  45. G. Tăbăcaru et al., (INDRA Collaboration), Nucl. Phys. A 764 371 (2006)

  46. S. Shlomo, J.B. Natowitz, Phys. Rev. C 44, 2878 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Borderie.

Additional information

Communicated by Nicolas Alamanos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borderie, B., Piantelli, S., Bonnet, E. et al. Negative heat capacity for hot nuclei using formulation from the microcanonical ensemble INDRA Collaboration. Eur. Phys. J. A 56, 101 (2020). https://doi.org/10.1140/epja/s10050-020-00109-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00109-9

Navigation