Skip to main content
Log in

GRIDSA: femtosecond lifetime measurements with germanium detector arrays

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We demonstrate the possibility to extract nuclear state femtosecond lifetimes from two-step \(\gamma \) ray cascades measured with a Ge-detector array. The technique is based on measuring the Doppler shift of a \(\gamma \) ray, caused by the recoil of a preceding \(\gamma \) ray emission. Since the two \(\gamma \) rays are populating/de-populating the same state they form a start/stop signal, the delay of which is compared to the slowing down motion of the nucleus within the target material. A multi-detector array combined with digital acquisition electronics in list mode, allows to measure several angular combinations and two-step cascades efficiently and simultaneously within one single experiment. The concept was demonstrated with the FIPPS array for the \(^{35}\hbox {Cl(n,}\gamma \hbox {)}^{36}\hbox {Cl}\) reaction, where we obtained good agreement with literature values showing the validity of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The reference to the data is already included in the references of the paper as DOI].

References

  1. J.M. Regis, M. Dannhoff, J. Jolie, Nucl. Instrum. Methods A 897, 38 (2018)

    Article  ADS  Google Scholar 

  2. P.J. Nolan, J.F. Sharpey-Schafer, Rep. Prog. Phys. 42, 1 (1979)

    Article  ADS  Google Scholar 

  3. A. Dewald et al., Prog. Part. Nucl. Phys. 67, 786 (2012)

    Article  ADS  Google Scholar 

  4. P. Petkov et al., Nucl. Instrum. Methods A 560, 564 (2006)

    Article  ADS  Google Scholar 

  5. T.K. Alexander, J.S. Forster, Adv. Nucl. Phys. 10, 197 (1978)

    Article  Google Scholar 

  6. T. Belgya et al., Nucl. Phys. A 607, 43 (1996)

    Article  ADS  Google Scholar 

  7. H.G. Börner, J. Jolie, J. Phys. G 19, 217 (1993)

    Article  ADS  Google Scholar 

  8. E.G. Kessler et al., Nucl. Instrum. Methods A 457, 187 (2001)

    Article  ADS  Google Scholar 

  9. C. Michelagnoli et al., EPJ Web Conf. 193, 04009 (2018)

    Article  Google Scholar 

  10. https://doi.org/10.5291/ILL-DATA.3-17-7

  11. V.T. Kupryashkin et al., AN SSSR Ser. Fiz. 53, 2 (1989)

    Google Scholar 

  12. T. Kahn et al., Nucl. Instrum. Methods A 385, 100 (1997)

    Article  ADS  Google Scholar 

  13. V. Egorov et al., Nucl. Phys. A 621, 745 (1997)

    Article  ADS  Google Scholar 

  14. Private Communication with C. Michelagnoli and J. Jolie

  15. S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)

    Article  ADS  Google Scholar 

  16. M. Meyer, V. Pontikis, Computer simulation in materials science: interatomic potentials. In Techniques and Applications, Proceedings of ASI (Kluwer Academic Publishers, Aussois, 1991)

  17. S. Ulbig et al., Phys. Lett. B 259, 29 (1991)

    Article  ADS  Google Scholar 

  18. A. Kuronen et al., Nucl. Phys. A 549, 59 (1992)

    Article  ADS  Google Scholar 

  19. M. Jentschel et al., Nucl. Instrum. Methods B 115, 446 (1996)

    Article  ADS  Google Scholar 

  20. https://www.nndc.bnl.gov/ensdf/. Accessed 25 Jan 2020

  21. C.R.A. Catlow et al., J. Phys. C 10, 1395 (1977)

    Article  ADS  Google Scholar 

  22. J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985)

    Google Scholar 

  23. J.F. Ziegler, J.P. Biersack, M.D. Ziegler, SRIM—the stopping and range of ions in matter (SRIM Co. ISBN 978-0-9654207-1-6. 2008) (2008)

  24. W. Wilson et al., Phys. Rev. B 15, 2458 (1977)

    Article  ADS  Google Scholar 

  25. https://root.cern.ch/. Accessed 25 Jan 2020

  26. Information extracted from the NuDat 2 database. http://www.nndc.bnl.gov/nudat2/. Accessed 25 Jan 2020

  27. N. Cieplicka-Oryńczak et al., Acta Phys. Pol. B 49, 561 (2018)

    Article  ADS  Google Scholar 

  28. J.A.J. Hermans et al., Nucl. Phys. A 284, 307 (1977)

    Article  ADS  Google Scholar 

  29. A.S. Yousef et al., Phys. Rev. C 8, 684 (1973)

    Article  ADS  Google Scholar 

  30. E.K. Warburton, Phys. Rev. C 7, 1120 (1973)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jentschel.

Additional information

Communicated by Calin Alexandru Ur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crespi, F.C.L., Cieplicka-Oryńczak, N., Jentschel, M. et al. GRIDSA: femtosecond lifetime measurements with germanium detector arrays. Eur. Phys. J. A 56, 94 (2020). https://doi.org/10.1140/epja/s10050-020-00088-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00088-x

Navigation