Skip to main content
Log in

Towards small-z fragmentation functions of pion from QCD analysis of single-inclusive electron–positron annihilation

  • Regular Article -Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The present study aimed to explore the behavior of unpolarized fragmentation functions (FFs) of pion in the regions of small momentum fractions z. This study used a novel phenomenological QCD approach in the framework of fractal (or self-similar) behavior of FFs to quantify the small-z region. To this end, a simple parameterization for the pion fractal FFs is considered and small z experimental datasets on single inclusive pion production in electron–positron (\(e^+e^-\)) annihilation (SIA) for the range of \(10.54< Q < 91.28\) GeV and \(z<0.1\) are included in this analysis. The estimations of the uncertainty in the present analysis are carried out using the standard “Hessian” approach. In total, considering the overall value of \(\chi ^2/\mathrm{dof}\) and theory/data comparisons, the results indicate excellent agreements between the experimental datasets and the theory predictions at small momentum fractions z. Finally, we present detailed comparisons between predictions for the relevant small-z observables obtained with various recent models of pion FFs available in literature. Considering the findings presented in this study, we discuss how our knowledge of pion FFs may be improved at small-z by future measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited [Authors’ comment: There is no data or why the data will not be deposited because all data that used in our paper are cited properly.]

References

  1. H. Mäntysaari, B. Schenke, C. Shen, P. Tribedy, Proton structure fluctuations: constraints from HERA and applications to \(p+A\) collisions. Nucl. Phys. A 967, 317 (2017). arXiv:1705.03735 [nucl-th]

    Article  ADS  Google Scholar 

  2. J. Gao, L. Harland-Lang, J. Rojo, The structure of the proton in the LHC precision era. Phys. Rep. 742, 1 (2018). arXiv:1709.04922 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  3. L. Rottoli, Precision QCD at the LHC: from the structure of the proton to all-order resummations, arXiv:1810.08257 [hep-ph]

  4. E.C. Aschenauer, S. Fazio, M.A.C. Lamont, H. Paukkunen, P. Zurita, Nuclear structure functions at a future electron-ion collider. Phys. Rev. D 96(11), 114005 (2017). arXiv:1708.05654 [nucl-ex]

    Article  ADS  Google Scholar 

  5. V. Bertone et al. [NNPDF Collaboration], A determination of the fragmentation functions of pions, kaons, and protons with faithful uncertainties. Eur. Phys. J. C 77(8), 516 (2017), arXiv:1706.07049 [hep-ph]

  6. D. de Florian, R. Sassot, M. Epele, R.J. Hernández-Pinto, M. Stratmann, Parton-to-pion fragmentation reloaded. Phys. Rev. D 91(1), 014035 (2015). arXiv:1410.6027 [hep-ph]

    Article  ADS  Google Scholar 

  7. D. de Florian, M. Epele, R.J. Hernandez-Pinto, R. Sassot, M. Stratmann, Parton-to-kaon fragmentation revisited. Phys. Rev. D 95(9), 094019 (2017). arXiv:1702.06353 [hep-ph]

    Article  ADS  Google Scholar 

  8. D.P. Anderle, F. Ringer, M. Stratmann, Fragmentation functions at next-to-next-to-leading order accuracy. Phys. Rev. D 92(11), 114017 (2015). arXiv:1510.05845 [hep-ph]

    Article  ADS  Google Scholar 

  9. V.N. Gribov, L.N. Lipatov, \(e^+ e^-\) pair annihilation and deep inelastic ep scattering in perturbation theory. Sov. J. Nucl. Phys. 15, 675 (1972). [Yad. Fiz. 15, 1218 (1972)]

    Google Scholar 

  10. G. Altarelli, G. Parisi, Asymptotic freedom in parton language. Nucl. Phys. B 126, 298 (1977)

    Article  ADS  Google Scholar 

  11. A. Abada et al. [FCC Collaboration], FCC Physics opportunities: future circular collider conceptual design report volume 1. Eur. Phys. J. C 79(6), 474 (2019)

  12. J.L. Abelleira Fernandez et al. [LHeC Study Group], A large hadron electron collider at CERN: report on the physics and design concepts for machine and detector. J. Phys. G 39, 075001 (2012), arXiv:1206.2913 [physics.acc-ph]

  13. R. Abdul Khalek, S. Bailey, J. Gao, L. Harland-Lang and J. Rojo, Probing proton structure at the large hadron electron collider. arXiv:1906.10127 [hep-ph]

  14. P. Azzi et al. [HL-LHC Collaboration and HE-LHC Working Group], Standard model physics at the HL-LHC and HE-LHC. arXiv:1902.04070 [hep-ph]

  15. M. Soleymaninia, M. Goharipour, H. Khanpour, Impact of unidentified light charged hadron data on the determination of pion fragmentation functions. Phys. Rev. D 99(3), 034024 (2019). arXiv:1901.01120 [hep-ph]

    Article  ADS  Google Scholar 

  16. N. Sato, J.J. Ethier, W. Melnitchouk, M. Hirai, S. Kumano, A. Accardi, First Monte Carlo analysis of fragmentation functions from single-inclusive \(e^+ e^-\) annihilation. Phys. Rev. D 94(11), 114004 (2016). arXiv:1609.00899 [hep-ph]

    Article  ADS  Google Scholar 

  17. M. Hirai, S. Kumano, T.-H. Nagai, K. Sudoh, Determination of fragmentation functions and their uncertainties. Phys. Rev. D 75, 094009 (2007). arXiv:hep-ph/0702250

    Article  ADS  Google Scholar 

  18. M. Soleymaninia, M. Goharipour, H. Khanpour, First QCD analysis of charged hadron fragmentation functions and their uncertainties at next-to-next-to-leading order. Phys. Rev. D 98(7), 074002 (2018). arXiv:1805.04847 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  19. T. Lastovicka, Selfsimilar properties of the proton structure at low x. Eur. Phys. J. C 24, 529 (2002). arXiv:hep-ph/0203260

    Article  Google Scholar 

  20. A. Jahan, D.K. Choudhury, Self-similarity and the Froissart bound. Phys. Rev. D 89(1), 014014 (2014). arXiv:1401.4327 [hep-ph]

    Article  ADS  Google Scholar 

  21. J.L. Albacete, J.G. Milhano, P. Quiroga-Arias, J. Rojo, Linear vs non-linear QCD evolution: from HERA data to LHC phenomenology. Eur. Phys. J. C 72, 2131 (2012). arXiv:1203.1043 [hep-ph]

    Article  ADS  Google Scholar 

  22. P.J. Rijken, W.L. van Neerven, O (alpha-s**2) contributions to the asymmetric fragmentation function in e+ e- annihilation. Phys. Lett. B 392, 207 (1997). arXiv:hep-ph/9609379

    Article  ADS  Google Scholar 

  23. J. Blumlein, V. Ravindran, O (alpha**2(s)) Timelike Wilson coefficients for parton-fragmentation functions in Mellin space. Nucl. Phys. B 749, 1 (2006). arXiv:hep-ph/0604019

    Article  ADS  Google Scholar 

  24. A. Mitov, S.O. Moch, QCD corrections to semi-inclusive hadron production in electron–positron annihilation at two loops. Nucl. Phys. B 751, 18 (2006). arXiv:hep-ph/0604160

    Article  ADS  Google Scholar 

  25. V.N. Gribov, L.N. Lipatov, Deep inelastic ep scattering in perturbation theory. Sov. J. Nucl. Phys. 15, 438 (1972). [Yad. Fiz. 15, 781 (1972)]

    Google Scholar 

  26. L.N. Lipatov, The parton model and perturbation theory. Sov. J. Nucl. Phys. 20, 94 (1975). [Yad. Fiz. 20, 181 (1974)]

    Google Scholar 

  27. Y.L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e+ e- annihilation by perturbation theory in quantum chromodynamics. Sov. Phys. JETP 46, 641 (1977). [Zh. Eksp. Teor. Fiz. 73, 1216 (1977)]

    ADS  Google Scholar 

  28. A. Mitov, S. Moch, A. Vogt, Next-to-next-to-leading order evolution of non-singlet fragmentation functions. Phys. Lett. B 638, 61 (2006). arXiv:hep-ph/0604053

    Article  ADS  Google Scholar 

  29. S. Moch, A. Vogt, On third-order timelike splitting functions and top-mediated Higgs decay into hadrons. Phys. Lett. B 659, 290 (2008). arXiv:0709.3899 [hep-ph]

    Article  ADS  Google Scholar 

  30. A.A. Almasy, S. Moch, A. Vogt, On the next-to-next-to-leading order evolution of flavour-singlet fragmentation functions. Nucl. Phys. B 854, 133 (2012). arXiv:1107.2263 [hep-ph]

    Article  ADS  Google Scholar 

  31. V. Bertone, S. Carrazza, J. Rojo, APFEL: a PDF evolution library with QED corrections. Comput. Phys. Commun. 185, 1647 (2014). arXiv:1310.1394 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  32. T. Lastovicka, Measurement of the inclusive deep inelastic scattering cross section at low \(Q^2\). https://doi.org/10.3204/DESY-THESIS-2004-016

  33. D. de Florian, R. Sassot, M. Stratmann, Global analysis of fragmentation functions for protons and charged hadrons. Phys. Rev. D 76, 074033 (2007). arXiv:0707.1506 [hep-ph]

    Article  ADS  Google Scholar 

  34. D.P. Anderle, T. Kaufmann, M. Stratmann, F. Ringer, Phys. Rev. D 95(5), 054003 (2017). https://doi.org/10.1103/PhysRevD.95.054003. arXiv:1611.03371 [hep-ph]

    Article  ADS  Google Scholar 

  35. A. Vogt, JHEP 1110, 025 (2011). https://doi.org/10.1007/JHEP10(2011)025. arXiv:1108.2993 [hep-ph]. [36]

  36. C.-H. Kom, A. Vogt, K. Yeats, JHEP 1210, 033 (2012). https://doi.org/10.1007/JHEP10(2012)033. arXiv:1207.5631 [hep-ph]

    Article  ADS  Google Scholar 

  37. D. Buskulic et al. [ALEPH Collaboration], Inclusive pi+-, K+- and (p, anti-p) differential cross-sections at the Z resonance. Z. Phys. C 66, 355 (1995)

  38. P. Abreu et al. [DELPHI Collaboration], pi+-, K+-, p and anti-p production in Z0 –\(>\) q anti-q, Z0 –\(>\) b anti-b, Z0 –\(>\) u anti-u, d anti-d, s anti-s. Eur. Phys. J. C 5, 585 (1998)

  39. R. Akers et al. [OPAL Collaboration], Measurement of the production rates of charged hadrons in e+ e- annihilation at the Z0. Z. Phys. C 63, 181 (1994)

  40. R. Brandelik et al. [TASSO Collaboration], Charged pion, kaon, proton and anti-proton production in high-energy e+ e- annihilation. Phys. Lett. 94B, 444 (1980)

  41. M. Althoff et al., [TASSO Collaboration], Charged hadron composition of the final state in e+ e- annihilation at high-energies. Z. Phys. C 17, 5 (1983)

  42. W. Braunschweig et al. [TASSO Collaboration], Pion, kaon and proton cross-sections in \(e^+ e^-\) annihilation at 34-GeV and 44-GeV center-of-mass energy. Z. Phys. C 42, 189 (1989)

  43. J. P. Lees et al. [BaBar Collaboration], Production of charged pions, kaons, and protons in \(e^+e^-\) annihilations into hadrons at \(\sqrt{s}=10.54\) GeV. Phys. Rev. D 88, 032011 (2013), arXiv:1306.2895 [hep-ex]

  44. H. Aihara et al. [TPC/Two Gamma Collaboration], Charged hadron inclusive cross-sections and fractions in \(e^+e^-\) annihiliation \(\sqrt{s}=29\) GeV. Phys. Rev. Lett. 61, 1263 (1988)

  45. K. Abe et al. [SLD Collaboration], Production of pi+, pi-, K+, K-, p and anti-p in light (uds), c and b jets from Z0 decays. Phys. Rev. D 69, 072003 (2004). arXiv:hep-ex/0310017

  46. H. Khanpour, S.A. Tehrani, Global analysis of nuclear parton distribution functions and their uncertainties at next-to-next-to-leading order. Phys. Rev. D 93(1), 014026 (2016). arXiv:1601.00939 [hep-ph]

    Article  ADS  Google Scholar 

  47. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C 63, 189 (2009). arXiv:0901.0002 [hep-ph]

    Article  ADS  Google Scholar 

  48. F. James, “MINUIT Function Minimization and Error Analysis: Reference Manual Version 94.1,” CERN-D-506, CERN-D506, F. James and M. Roos, “Minuit: A System for Function Minimization and Analysis of the Parameter Errors and Correlations”. Comput. Phys. Commun. 10, 343 (1975). https://doi.org/10.1016/0010-4655(75)90039-9

    Article  ADS  Google Scholar 

  49. T.J. Hou et al., Reconstruction of Monte Carlo replicas from Hessian parton distributions. JHEP 1703, 099 (2017). arXiv:1607.06066 [hep-ph]

    Article  ADS  Google Scholar 

  50. J. Pumplin, D. Stump, R. Brock, D. Casey, J. Huston, J. Kalk, H.L. Lai, W.K. Tung, Uncertainties of predictions from parton distribution functions. 2. The Hessian method. Phys. Rev. D 65, 014013 (2001). arXiv:hep-ph/0101032

    Article  ADS  Google Scholar 

  51. A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Uncertainties of predictions from parton distributions. 1: Experimental errors. Eur. Phys. J. C 28, 455 (2003). arXiv:hep-ph/0211080

    Article  ADS  Google Scholar 

  52. H. Khanpour, Phenomenology of diffractive DIS in the framework of fracture functions and determination of diffractive parton distribution functions. Phys. Rev. D 99(5), 054007 (2019). arXiv:1902.10734 [hep-ph]

    Article  ADS  Google Scholar 

  53. T. Kneesch, B.A. Kniehl, G. Kramer, I. Schienbein, Charmed-meson fragmentation functions with finite-mass corrections. Nucl. Phys. B 799, 34 (2008). arXiv:0712.0481 [hep-ph]

    Article  ADS  Google Scholar 

  54. SM Moosavi Nejad, M. Soleymaninia, A. Maktoubian, Proton fragmentation functions considering finite-mass corrections. Eur. Phys. J. A 52(10), 316 (2016). arXiv:1512.01855 [hep-ph]

    Article  ADS  Google Scholar 

  55. M. Salajegheh, S.M. Moosavi Nejad, M. Soleymaninia, H. Khanpour, S. Atashbar Tehrani, NNLO charmed-meson fragmentation functions and their uncertainties in the presence of meson mass corrections. arXiv:1904.09832 [hep-ph]

  56. S. Albino, B.A. Kniehl, G. Kramer, AKK update: improvements from new theoretical input and experimental data. Nucl. Phys. B 803, 42 (2008). arXiv:0803.2768 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Maryam Soleymaninia and Hamzeh Khanpour for many helpful discussions and comments. F. Taghavi-Shahri is grateful Ferdowsi University of Mashhad for financial support for this project. This work is supported by Ferdowsi University of Mashhad under Grant no. 3/46985.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Taghavi-Shahri.

Additional information

Communicated by Reinhard Alkofer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamaditabar, A., Taghavi-Shahri, F. & Shoeibi, S. Towards small-z fragmentation functions of pion from QCD analysis of single-inclusive electron–positron annihilation. Eur. Phys. J. A 56, 77 (2020). https://doi.org/10.1140/epja/s10050-020-00087-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00087-y

Navigation