Skip to main content

Advertisement

Log in

Double differential neutron yield from \(^{{\mathbf {12}}}\)C incident on thick \(^{{\mathbf {12}}}\)C target at 116 MeV

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Double differential neutron yield (DDNY) for \(^{\mathrm {12}}\hbox {C}^{\mathrm {6+}}\) projectiles at116 MeV bombarded on thick \(^{\mathrm {12}}\hbox {C}\) target is reported. Thick target neutron yield data in energy range \(\sim 10\) MeV/nucleon is very sparsely available in literature. Time of flight technique was used to measure the kinetic energy distribution of the emerging neutrons. Angular distribution of emission was also studied using five small organic liquid scintillator detectors EJ 301, simultaneously, at five angles at a distance of 150 cm from the target and \(30^{\circ }\) apart covering forward (\(0^{\circ }\)) to backward (\(120^{\circ }\)) angles. The experimental measurements were compared with statistical reaction code PACE2 and FLUKA outputs. The PACE2 and FLUKA calculations reproduce the measured thick target neutron spectra fairly well implying that compound nuclear emissions dominate the reaction process at these energies. The detailed energy distribution of emitted neutrons can be used for source term estimations in shielding calculation for the facility and it will also be useful in dose estimation due to secondary neutrons in the heavy or light ion therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The authors can be contacted for the data presented in this article.]

References

  1. T. Kurosawa, T. Nakamura, N. Nakao, T. Shibata, Y. Uwamino, A. Fukumura, Nucl. Instrum. Methods Phys. Res. A 430, 400 (1999)

    Article  ADS  Google Scholar 

  2. P.K. Sarkar, Radiat. Meas. 45, 1476 (2010)

    Article  Google Scholar 

  3. T. Nakamura, Radiat. Protect. Environ. 35, 111 (2012)

    Article  Google Scholar 

  4. ICRP Publication 74, Ann. ICRP, 26 (3/4) (1996)

  5. R.H. Olsher, H.H. Hsu, A. Beverding, J.H. Kleck, W.H. Casson, D.G. Vasilik, R.T. Devine, Health Phys. 70, 170 (2000)

    Article  Google Scholar 

  6. R.H. Olsher, D.T. Seagraves, S.L. Eisele, C.W. Bjork, W.A. Martinez, L.L. Romero, M.W. Mallett, M.A. Duran, C.R. Hurlbut, Health Phys. 86, 603 (2004)

    Article  Google Scholar 

  7. S. Agosteo, M. Caresana, M. Ferrarini, M. Silari, Radiat. Meas. 45, 1217 (2010)

    Article  Google Scholar 

  8. ICRP Publication 103, Ann. ICRP (2007)

  9. ICRP Publication 116, Ann. ICRP (2010)

  10. ICRP Publication 60, Ann. ICRP 21 (1990)

  11. K. Shin, K. Miyahara, E. Tanabe, Y. Uwamino, Nucl. Sci. Eng. 120, 40 (1995)

    Article  Google Scholar 

  12. A. Gavron, Phys. Rev. C 21, 230 (1980)

    Article  ADS  Google Scholar 

  13. A. Fasso, A. Ferrari, J. Ranft, P.R. Sala, CERN-2005-10, INFN/TC_05/11, SLAC-R-773 (2005)

  14. G. Battistoni, S. Muraro, P.R. Sala, F. Cerutti, A. Ferrari, S. Roesler, A. Fasso, J. Ranft, Workshop 2006, Fermilab, 6–8 September 2006. AIP Conf. Proc. 896, 31 (2007)

  15. http://www.srim.org/

  16. http://scionix.nl/frame-liquid-scintillators/

  17. V. Suman, C. Sunil, S. Nair, S. Paul, K. Biju, G.S. Sahoo, P.K. Sarkar, Nucl. Instrum. Methods Phys. Res. A 800, 29 (2015)

    Article  ADS  Google Scholar 

  18. A. Pantaleo, L. Fiore, G. Guarino, V. Paticchio, G. D’Erasmo, E.M. Fiore, N. Colonna, Nucl. Instrum. Methods Phys. Res. A 291(3), 570 (1990)

    Article  ADS  Google Scholar 

  19. http://www.tifr.res.in/~pell/lamps.html

  20. C. Sunil, T. Bandyopadhyay, M. Nandy, V. Suman, S. Paul, V. Nanal, R.G. Pillay, P.K. Sarkar, Nucl. Instrum. Methods Phys. Res. A 721, 21 (2013)

    Article  ADS  Google Scholar 

  21. R. Bass, Phys. Rev. Lett. 39, 265 (1977)

    Article  ADS  Google Scholar 

  22. M. Nandy, Tapas Bandyopadhyay, P.K. Sarkar, Phys. Rev. C 63, 034610 (2001)

    Article  ADS  Google Scholar 

  23. P.K. Sarkar, T. Bandyopadhyay, G. Muthukrishnan, S. Ghosh, Phys. Rev. C 43, 1855 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author VS is thankful to the BARC-TIFR, Pelletron-Linac Facility staff for smooth operation of the accelerator during the measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitisha Suman.

Additional information

Communicated by Sailajananda Bhattacharya

C.Sunil: Work carried out while employed by BARC; A. K. Mohanty in NPD, BARC till Mar 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suman, V., Sunil, C., Pal, S. et al. Double differential neutron yield from \(^{{\mathbf {12}}}\)C incident on thick \(^{{\mathbf {12}}}\)C target at 116 MeV. Eur. Phys. J. A 56, 80 (2020). https://doi.org/10.1140/epja/s10050-020-00082-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00082-3

Navigation