Skip to main content

Advertisement

Log in

Post-neutron mass chain yield distribution in the thermal neutron induced fission of \(^{{{229}}}\text {Th}\)

  • Regular Article – Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The cumulative and independent yields of various fission products within the mass range of 77–151 have been measured in the \(^{229}\hbox {Th}(\hbox {n}_{\mathrm {th}}\), f) reaction by using radiochemical methods together with an off-line \(\upgamma \)-ray spectrometric technique. The post-neutron mass chain yields were obtained from the cumulative fission yields by using charge distribution correction. From the mass yields data, the peak-to-valley (P/V) ratio, full width at tenth maximum (FWTM) of light and heavy mass wing, the average light mass (\({{<}}\hbox {A}_{\mathrm {L}}{>}\)) and heavy mass (\({<}\hbox {A}_{\mathrm {H}}{>}\)) as well as the average neutrons number (\({<}\nu {>}\)) were obtained. The fine structure of mass chain yield distribution (MD) in the \(^{229}\hbox {Th}\)(\(\hbox {n}_{\mathrm {th}}\), f) reaction was explained from the point of nuclear structure effect such as shell closure proximity and even-odd effect. The MD in the \(^{229}\hbox {Th}\)(\(\hbox {n}_{\mathrm {th}}\), f) reaction was compared with the MD of \(^{\mathrm {235}}\hbox {U}\)(\(\hbox {n}_{\mathrm {th}}\), f) reaction and the role of standard I and standard II asymmetric mode of fission was examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There is no reason. Data are given in Tabular form in the manuscript. If you want data can be deposited.]

References

  1. C. Wagemans, The Nuclear Fission Process (CRC, London, 1990)

    Google Scholar 

  2. R. Vandenbosch, J.R. Huizenga, Nuclear Fission (Academic, New York, 1973)

    Google Scholar 

  3. K. Oyamatsu, H. Takeuchi, M. Sagisaka, J. Katakura, J. Nucl. Sci. Technol. 38, 477 (2001)

    Article  Google Scholar 

  4. T.R. Allen, D.C. Crawford, Lead-cooled fast reactor systems and the fuels and materials challenges. Sci. Technol. Nucl. Install. (2007). https://doi.org/10.1155/2007/97486

    Article  Google Scholar 

  5. A. Nuttin, D. Heuer, A. Billebaud, R. Brissot, C. Le Brun, E. Liatard, J.M. Loiseaux, L. Mathieu, O. Meplan, E. Merle-Lucotte, H. Nifenecker, F. Perdu, S. David, Energy Progr. Nucl. 46, 77 (2005)

    Article  Google Scholar 

  6. Fast Reactors and Accelerator Driven Systems Knowledge Base, IAEA-TECDOC-1319: Thorium fuel utilization: options and trends (2002)

  7. L. Mathieu, et al., Proportion for a very simple thorium molten salt reactor, in Proceedings of the Global Interna-tional Conference, Tsukuba, Japan, Paper No. 428 (2005)

  8. R.K. Sinha, A. Kakodkar, Nucl. Eng. Des. 236, 683 (2006)

    Article  Google Scholar 

  9. F. Carminati, R. Klapisch, J.P. Revol, C. Roche, J.A. Rubia, C. Rubia, An energy amplifier for cleaner and inex-haustible nuclear energy production Driven by particle beam accelerator, CERN/AT/93-49 (ET) (1993)

  10. C. Rubia, J.A. Rubio, S. Buono, F. Carminati, N. Fietier, J. Galvez, C. Geles, Y. Kadi, R. Klapisch, P. Mandrilion, J.P. Revol, Ch. Roche, CERN/AT/95-44 (ET) 1995, CERN/AT/95-53 (ET) 1995, CERN/LHC/96-01 (LET) 1996, CERN/LHC/97-01 (EET) (1997)

  11. C.D. Bowman, Annu. Rev. Nucl. Part. Sci. 48, 505 (1998)

    Article  ADS  Google Scholar 

  12. U. Brosa, S. Grossmann, A. Muller, Phys. Rep. 197, 167 (1990)

    Article  ADS  Google Scholar 

  13. B.D. Wilkins, E.P. Steinberg, R.R. Chasman, Phys. Rev. C 14, 1832 (1976)

    Article  ADS  Google Scholar 

  14. H. Naik, S.P. Dange, R.J. Singh, S.B. Manohar, Nucl. Phys. A 618, 143 (1997)

    Article  ADS  Google Scholar 

  15. H. Naik, R.J. singh, R.H. Iyer, Eur. Phys. J. A 16, 495 (2003)

    Article  ADS  Google Scholar 

  16. H. Naik, S.P. Dange, A.V.R. Reddy, Nucl. Phys. A 781, 1 (2007)

    Article  ADS  Google Scholar 

  17. G. Mariolopoulos, Ch. Hamelin, J. Blachot, J.P. Bocquet, R. Brissot, R. Crancon, H. Nifenecker, Ch. Ristori, Nucl. Phys. A 361, 213 (1981)

    Article  ADS  Google Scholar 

  18. M. Djebara, M. Asghar, J.P. Bocquet, R. Brissot, M. Maurel, H. Nifenecker, Ch. Ristori, Nucl. Phys. A 425, 120 (1984)

    Article  ADS  Google Scholar 

  19. N. Baucheneb, P. Geltenbort, M. Asghar, G. Barreau, J.P. Doan, F. Gonnenwein, B. Leroux, A. Oed, A. Sicre, Nucl. Phys. A 502, 261 (1989)

    Article  ADS  Google Scholar 

  20. J.P. Bocquet, R. Brissot, R. Faust, M. Fowler, J. Wilhelmy, M. Asghar, M. Djebara, Z. Phys. A 335, 41 (1990)

    ADS  Google Scholar 

  21. R.J. Singh, S.S. Rattan, A.V.R. Reddy, C.R. Venkatasubramani, A. Ramaswami, S. Prakash, M.V. Ramaniah, Radiochimi. Acta 31, 69 (1982)

    Article  Google Scholar 

  22. M. Haddad, J. Crancon, G. Lospice, M. Asghar, J. Blachot, Radiochim. Acta. 42, 165 (1987)

    Article  Google Scholar 

  23. J.K. Dickens, J.W.M. Cconnell, K.J. Northcutt, Nucl. Sci. Eng. 80, 455 (1982)

    Article  Google Scholar 

  24. J.K. Dickens, JWMc Cconnell, Phys. Rev. C 27, 253 (1983)

    Article  ADS  Google Scholar 

  25. J.E. Gindler, L.E. Glendenin, D.J. Henderson, J. Inorg. Nucl. Chem. 43, 1433 (1981)

    Article  Google Scholar 

  26. N. Ravindran, K.F. Flynn, L.E. Glendenin, J. Inorg. Nucl. Chem. 28, 921 (1966)

    Article  Google Scholar 

  27. N.I. Borisova, R.A. Zenkova, B.V. Kurchatov, L.N. Morozov, V.I. Npvgorodtseva, V.A. Pchelin, L.V. Chistyakov, V.M. Shubko, Sov. J. Nucl. Phys. 8, 404 (1969)

    Google Scholar 

  28. J.W. Harvey, W.B. Clarke, H.G. Thode, R.H. Tomlinson, Can. J. Phys. 44, 1011 (1966)

    Article  ADS  Google Scholar 

  29. A.N. Gudkov, S.V. Krivasheev, A.B. Koldobskiy, V.V. Kovalenko, E.Y. Bobkov, V.M. Zhivun, Radiochim. Acta 57, 69 (1992)

    Article  Google Scholar 

  30. C. Agarwal, A. Goswami, P.C. Kalsi, S. Singh, A. Mhatre, A. Ramaswami, J. Radioanal. Nucl. Chem. 275, 445 (2008)

    Article  Google Scholar 

  31. A.C. Wahl, At. Data Nucl. Data Tables 39, 1 (1988)

    Article  ADS  Google Scholar 

  32. H.N. Erten, N.K. Aras, J. Inorg. Nucl. Chem. 41, 149 (1979)

    Article  Google Scholar 

  33. K.F. Flynn, Argone National Laboratory Report, ANL-75-24 (1975)

  34. NuDat 2.6, National Nuclear Data Center, Brookhaven National Laboratory, updated (2011). http://www.nndc.bnl.gov/

  35. S.Y.F. Chu, L.P. Ekstrom, R.B. Firestone, The Lund LBNL, Nuclear Data Search, Version 2.0, February, WWW Table of Radioactive Isotopes. (1999). http://nucleadata.nuclear.Ju.se/toi/

  36. J. Blachot, Ch. Fiche, Ann. Phys. (Paris) 6, 3–218 (1981)

    ADS  Google Scholar 

  37. Nuclear Energy Agency (NEA), Evaluated Nuclear Data Library Descriptions, ENDF/B-VIII.0. http://www.oecd-nea.org/

  38. C.D. Coryell, M. Kaplan, R.D. Fink, Can. J. Chem. 39, 646 (1961)

    Article  Google Scholar 

  39. N. Sugarman, A. Turkevich, in Radiochemical Studies: The Fission Product, vol. 3, ed. by C.D. Coryell, N. Sugarman (McGraw-Hill, New York, 1951), p. 1396

  40. T.R. England, B.F. Rider, Evaluation and Compilation of Fission Products Yields. Los Alamos National Laboratory, LA-UR-94-3106, ENDF-349, ENDF/B-VI (1993)

  41. P. Moller, Nucl. Phys. A 192, 529 (1972)

    Article  ADS  Google Scholar 

  42. D.C. Hoffman, M.M. Hoffman, Ann. Rev. Nucl. Part. Sci. 24, 151 (1974)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. R.H. Iyer, earlier head of Radiochemistry Division, BARC for his keen interest and support during this work. The authors are also thankful to staff of the reactor APSARA and CIRUS at BARC for their helps for providing the irradiation facility and successfully carrying out the irradiations during experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Naik.

Additional information

Communicated by Sailajananda Bhattacharya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, H., Singh, R.J. & Dange, S.P. Post-neutron mass chain yield distribution in the thermal neutron induced fission of \(^{{{229}}}\text {Th}\). Eur. Phys. J. A 56, 82 (2020). https://doi.org/10.1140/epja/s10050-020-00080-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00080-5

Navigation