Residual activation of the SPES Front-End system: a comparative study between the MCNPX and FLUKA codes

Abstract

A study of the residual activation of the Front-End system structure of the SPES (Selective Production of Exotic Species) facility, currently under construction at the Legnaro National Laboratories of INFN, Italy, is performed. The study provides useful information for the planning of inspections, maintenance operations and decommissioning of the facility as well as for the assessment of radiological conditions and safety requirements in the design and operation of any accelerator-driven radioactive ion beam facility. To better assess the obtained results, two Monte Carlo codes were independently used: MCNPX combined with CINDER’90 and FLUKA. The results of the two calculation procedures are compared at each step: fissions, fluxes, activation, dose rate. Since the energy range considered does not represent a typical application for any of the two codes, the comparison of the collected results can provide useful inputs for the developers. In particular, the agreement of the two codes on the global quantities is good, being of the order of 20–40% on average, and never larger than a factor 2. Nevertheless, the comparative study shows that, in this energy range, FLUKA seems to underestimate the angular straggling of protons and to overestimate the proton interaction cross-sections, with respect to MCNPX.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data produced in the present work are not deposited in a public repository. However, the authors are available to share the data on request.]

References

  1. 1.

    Y. Blumenfeld et al., Phys. Scr. T152, 014023 (2013)

    ADS  Article  Google Scholar 

  2. 2.

    T. Nilsson, Nucl. Instrum. Methods Phys. Res. B 317, 194 (2013)

    ADS  Article  Google Scholar 

  3. 3.

    L. Popescu et al., Nucl. Instrum. Methods Phys. Res. B 463, 262 (2020)

    ADS  Article  Google Scholar 

  4. 4.

    A. Andrighetto et al., Eur. Phys. J. A 25, 41 (2005)

    Article  Google Scholar 

  5. 5.

    A. Andrighetto et al., Eur. Phys. J. A 30, 591 (2006)

    ADS  Article  Google Scholar 

  6. 6.

    G. Prete et al., Eur. Phys. J. Web Conf. 66, 11030 (2014)

    Article  Google Scholar 

  7. 7.

    A. Monetti et al., Eur. Phys. J. A 51, 128 (2015)

    ADS  Article  Google Scholar 

  8. 8.

    A. Monetti et al., Eur. Phys. J. A 52, 168 (2016)

    ADS  Article  Google Scholar 

  9. 9.

    A. Andrighetto et al., J. Phys. Conf. Ser. 966, 012028 (2018)

    Article  Google Scholar 

  10. 10.

    S. Corradetti et al., Ceram. Int. 43, 10824 (2017)

    Article  Google Scholar 

  11. 11.

    A. Andrighetto et al., ENEA contribution to the design of the thin target for the SPES project, FIN-P815-020 (2006)

  12. 12.

    A. Donzella et al., Nucl. Instrum. Methods Phys. Res. B 463, 169 (2020)

    ADS  Article  Google Scholar 

  13. 13.

    L. Sarchiapone, D. Zafiropoulos, Int. J. Mod. Phys. Conf. Ser. 44, 1660238 (2016)

    Article  Google Scholar 

  14. 14.

    D.B. Pelowitz, MCNPX User’s Manual, Version 2.7.0, LA-CP-11-00438 (2011)

  15. 15.

    W.B. Wilson, A Manual for CINDER’90, Version 07.4 Codes and Data, LA-UR-07-8412 (2008)

  16. 16.

    A. Fassò et al., FLUKA: a multi-particle transport code, CERN-2005-10, INFN/TC05/11, SLAC-R-733 (2005)

  17. 17.

    G. Battistoni et al., AIP Conf. Proc. 896, 31 (2007)

    ADS  Article  Google Scholar 

  18. 18.

    E. Mauro, M. Silari, Nucl. Instrum. Methods Phys. Res. A 605, 249 (2009)

    ADS  Article  Google Scholar 

  19. 19.

    R.J. Sheu et al., Nucl. Instrum. Methods Phys. Res. B 280, 10 (2012)

    ADS  Article  Google Scholar 

  20. 20.

    Y. Romanets et al., Radiat. Prot. Dosim. 155(3), 351 (2013)

    Article  Google Scholar 

  21. 21.

    B. Sarer et al., Ann. Nucl. Energy 62, 382 (2013)

    Article  Google Scholar 

  22. 22.

    G. Ottaviano et al., Radiat. Phys. Chem. 95, 236 (2014)

    ADS  Article  Google Scholar 

  23. 23.

    A. Infantino et al., Radiat. Phys. Chem. 116, 231 (2015)

    ADS  Article  Google Scholar 

  24. 24.

    A. Infantino et al., Nucl. Instrum. Methods Phys. Res. B 366, 117 (2016)

    ADS  Article  Google Scholar 

  25. 25.

    https://mcnp.lanl.gov

  26. 26.

    H.W. Bertini, Phys. Rev. 131, 1801 (1963)

    ADS  Article  Google Scholar 

  27. 27.

    J. Barish et al., HETFIS High-Energy Nucleon-Meson Transport Code with Fission, ORNL-TM-7882 (1981)

  28. 28.

    C. Denise et al., A Los Alamos Multigrouped Activation File, Los Alamos National Laboratory preprint LA-UR-94-1471 (1994)

  29. 29.

    J. Valentin, The 2007 Recommendations of the International Commission on Radiological Protection, ICRP Publication 103, Annals of ICRP, 37, No. 2/4 (2007)

  30. 30.

    M. Pelliccioni, Radiat. Prot. Dosim. 88(4), 279 (2000)

    Article  Google Scholar 

  31. 31.

    International Commission on Radiological Protection, Conversion Coefficients for use in Radiological Protection Against External Radiation, ICRP Publication 74, Annals of ICRP, 26, No. 3/4 (1996)

  32. 32.

    International Commission on Radiation Units and Measurements, Conversion Coefficients for use in Radiological Protection Against External Radiation, ICRU Report 57 (Bethesda (ICRU Publications), MD, 1998)

  33. 33.

    G. Battistoni et al., Ann. Nucl. Energy 82, 10 (2015)

    Article  Google Scholar 

  34. 34.

    A. Ferrari et al., The physics of high energy reactions. In: Gandini, A., Reffo, G. (Eds.), Workshop on Nuclear Reaction Data and Nuclear Reactors Physics, Design and Safety. p. 424 (1998)

  35. 35.

    G. Battistoni et al., The physics of high energy reactions. In: Gadioli, E. (Ed.), 11th International Conference on Nuclear Reaction Mechanisms. p. 483 (2006)

  36. 36.

    M. Cavinato et al., Nucl. Phys. A 679, 753 (2001)

    ADS  Article  Google Scholar 

  37. 37.

    M. Cavinato et al., Phys. Lett. B 382, 1 (1996)

    ADS  Article  Google Scholar 

  38. 38.

    P. Andreetto et al., EPJ Web Conf. 214, 07010 (2019)

    Article  Google Scholar 

  39. 39.

    https://www.ptc.com/en/products/cad/creo

  40. 40.

    R. Vivanco, Neutron and gamma damage study of critical SPES Front-End components Report, LNL Legnaro and ESS Bilbao (2014)

  41. 41.

    M. Ferrari et al., A residual activation study on the SPES Front-End: dosimetry and radiation protection calculations, SPES-Note-WPB06\_04\_0004 (2017)

  42. 42.

    M. Ferrari et al., RadJ. 3(2), 98 (2018)

    Google Scholar 

  43. 43.

    https://tendl.web.psi.ch/tendl_2017/tendl2017.html

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Antonietta Donzella.

Additional information

Communicated by Carlo Broggini

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Donzella, A., Ferrari, M., Zenoni, A. et al. Residual activation of the SPES Front-End system: a comparative study between the MCNPX and FLUKA codes. Eur. Phys. J. A 56, 54 (2020). https://doi.org/10.1140/epja/s10050-020-00068-1

Download citation