Skip to main content
Log in

Gamma-decay from dipole vibrations: Probe for nuclear properties

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

A review of selected experimental works on the gamma-decay from the Giant and Pygmy Dipole Resonances is presented. The common feature of these experiments is that gamma-decay originates from dipole states populated using reactions induced by heavy ions. The focus is the investigation of dipole modes built on the ground and excited states. The major developments made during the years regarding the detection of high-energy gamma-rays are briefly discussed together with specific results concerning a chosen number of problems among those that were addressed by the theoretical works of P.F. Bortignon. They are: i) the dipole mode in the initial stages of reactions among heavy ions with different \( N/Z\) values for the target and projectile; ii) the problem of isospin symmetry in nuclei at finite temperature; iii) pygmy states far from stability; iv) the nature of the pygmy states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.F. Bortignon, A. Bracco, R.A. Broglia, Giant Resonances: Nuclear Structure at Finite Temperature (Harwood Academic Publishers, Australia, 1998)

  2. J.O. Newton et al., Phys. Rev. Lett. 46, 1383 (1981)

    ADS  Google Scholar 

  3. D.M. Brink, PhD Thesis, University of Oxford (1955) unpublished

  4. V.A. Plujko et al., At. Data Nucl. Data Tables 123, 1 (2018)

    ADS  Google Scholar 

  5. M. Krzysiek et al., Nucl. Instrum. Methods A 916, 257 (2019)

    ADS  Google Scholar 

  6. A. Bracco, E.G. Lanza, A. Tamii, Prog. Part. Nucl. Phys. 106, 360 (2019)

    ADS  Google Scholar 

  7. A. Maj et al., Nucl. Phys. A 571, 185 (1994)

    ADS  Google Scholar 

  8. O. Wieland et al., Phys. Rev. Lett. 97, 012501 (2006)

    ADS  Google Scholar 

  9. H.J. Wollersheim et al., Nucl. Instrum. Methods A 537, 637 (2005)

    ADS  Google Scholar 

  10. O. Wieland et al., Phys. Rev. Lett. 102, 092502 (2009)

    ADS  Google Scholar 

  11. A. Giaz et al., Nucl. Instrum. Methods A 729, 910 (2013)

    ADS  Google Scholar 

  12. R. Nicolini, From the Big Bang to the Nucleosynthesis, in Proceedings of the International School of Physics Enrico Fermi edited by A. Bracco, E. Nappi, Vol. 178 (SIF, 2010) p. 417

  13. D. Ralet et al., Nucl. Instrum. Methods A 786, 32 (2015)

    ADS  Google Scholar 

  14. M. Mattiuzzi et al., Nucl. Phys. A 612, 262 (1997)

    ADS  Google Scholar 

  15. A. Bracco et al., Mod. Phys. Lett. A 22, 2479 (2007)

    ADS  Google Scholar 

  16. O. Wieland et al., Phys. Rev. C 98, 064313 (2018)

    ADS  Google Scholar 

  17. R. Nicolini et al., Nucl. Instrum. Methods A 582, 554 (2007)

    ADS  Google Scholar 

  18. S. Akkoyun et al., Nucl. Instrum. Methods A 668, 26 (2012)

    ADS  Google Scholar 

  19. A. Bracco, F.C.L. Crespi, E.G. Lanza, Eur. Phys. J. A 51, 99 (2015)

    ADS  Google Scholar 

  20. A. Bracco et al., Phys. Scr. 91, 083002 (2016)

    ADS  Google Scholar 

  21. M. Harakeh, A. van der Woude, Giant Resonances (Oxford University Press, 2001)

  22. A. Schiller et al., At. Data Nucl. Data Tables 93, 549 (2007)

    ADS  Google Scholar 

  23. C. Ghosh et al., Phys. Rev. C 94, 014318 (2016)

    ADS  Google Scholar 

  24. C. Ghosh et al., Phys. Rev. C 96, 014309 (2017)

    ADS  Google Scholar 

  25. Mukul et al., Phys. Rev. C 88, 024312 (2013)

    ADS  Google Scholar 

  26. Battacharya et al., Phys. Rev. C 78, 064601 (2008)

    ADS  Google Scholar 

  27. S. Ceruti et al., Phys. Rev. C 95, 014312 (2017)

    ADS  Google Scholar 

  28. M. Ciemala et al., Phys. Rev. C 91, 054313 (2015)

    ADS  Google Scholar 

  29. A.K.R. Kumar et al., Phys. Rev. C 96, 024322 (2017)

    ADS  Google Scholar 

  30. D. Pandit et al., Phys. Rev. C 81, 061302R (2010)

    ADS  Google Scholar 

  31. D. Mondal et al., Phys. Lett. B 784, 423 (2018)

    ADS  Google Scholar 

  32. B. Dey et al., Phys. Rev. C 97, 014317 (2018)

    ADS  Google Scholar 

  33. P.F. Bortignon, Phys. At. Nucl. 64, 1027 (2001)

    Google Scholar 

  34. M. Mattiuzzi et al., Nucl. Phys. A 612, 262 (1997)

    ADS  Google Scholar 

  35. A. Bracco et al., Phys. Rev. Lett. 74, 3748 (1995)

    ADS  Google Scholar 

  36. P. Donati et al., Phys. Lett. B 383, 15 (1996) and references therein

    ADS  Google Scholar 

  37. E. Ormand et al., Phys. Rev. Lett. 69, 2905 (1992) and references therein

    ADS  Google Scholar 

  38. D. Kusnezov et al., Phys. Rev. Lett. 81, 542 (1998)

    ADS  Google Scholar 

  39. D. Pandit et al., Phys. Rev. C 88, 054327 (2013) and references therein

    ADS  Google Scholar 

  40. D. Pandit et al., Phys. Lett. B 713, 434 (2012)

    ADS  Google Scholar 

  41. O. Wieland et al., Phys. Rev. Lett. 97, 012501 (2006)

    ADS  Google Scholar 

  42. A. Maj et al., Nucl. Phys. A 731, 319 (2004)

    ADS  Google Scholar 

  43. P.F. Bortignon et al., Phys. Rev. Lett. 67, 3360 (1991)

    ADS  Google Scholar 

  44. D. Santonocito et al., Phys. Lett. B 782, 427 (2018)

    ADS  Google Scholar 

  45. K.A. Snover, Nucl. Phys. A 687, 337c (2001)

    ADS  Google Scholar 

  46. P. Chomaz, Phys. Lett. B 347, 1 (1995)

    ADS  Google Scholar 

  47. P.F. Bortignon et al., Nucl. Phys. A 583, C101 (1995)

    ADS  Google Scholar 

  48. V. Baran et al., Nucl. Phys. A 600, 111 (1996)

    ADS  Google Scholar 

  49. Ph. Chomaz et al., Nucl. Phys. A 563, 509 (1993)

    ADS  Google Scholar 

  50. S. Flibotte et al., Phys. Rev. Lett. 77, 1448 (1996)

    ADS  Google Scholar 

  51. V. Baran et al., Phys. Rev. Lett. 87, 182501 (2001)

    ADS  Google Scholar 

  52. D. Pierroutsakou et al., Phys. Rev. C 80, 024612 (2009) and references therein

    ADS  Google Scholar 

  53. A. Corsi et al., Phys. Lett. B 679, 197 (2009)

    ADS  Google Scholar 

  54. A. Giaz et al., Phys. Rev. C 90, 014609 (2014)

    ADS  Google Scholar 

  55. E. Wojcik et al., Acta Phys. Pol. B 38, 1469 (2007)

    ADS  Google Scholar 

  56. A. Corsi et al., Phys. Rev. C 84, 041304(R) (2011)

    ADS  Google Scholar 

  57. S. Ceruti et al., Phys. Rev. Lett. 115, 222502 (2015)

    ADS  Google Scholar 

  58. D. Mondal et al., Phys. Lett. B 763, 422 (2016)

    ADS  Google Scholar 

  59. W. Satula et al., Phys. Rev. Lett. 103, 012502 (2009)

    ADS  Google Scholar 

  60. H. Sagawa et al., Phys. Lett. B 444, 1 (1998)

    ADS  Google Scholar 

  61. D. Savran, T. Aumann, A. Zilges, Prog. Part. Nucl. Phys. 70, 210 (2013)

    ADS  Google Scholar 

  62. D. Savran et al., Phys. Rev. Lett. 97, 172502 (2006)

    ADS  Google Scholar 

  63. J. Endres et al., Phys. Rev. Lett. 105, 212503 (2010)

    ADS  Google Scholar 

  64. E.G. Lanza et al., Phys. Rev. C 79, 054615 (2009)

    ADS  Google Scholar 

  65. E.G. Lanza et al., Phys. Rev. C 84, 064602 (2011)

    ADS  Google Scholar 

  66. F.C.L. Crespi et al., Phys. Rev. Lett. 113, 012501 (2014)

    ADS  Google Scholar 

  67. L. Pellegri et al., Phys. Lett. B 738, 519 (2014)

    ADS  Google Scholar 

  68. F.C.L. Crespi et al., Phys. Rev. C 91, 024323 (2015)

    ADS  Google Scholar 

  69. L. Pellegri et al., Phys. Rev. C 92, 014330 (2015)

    ADS  Google Scholar 

  70. M. Krzysiek et al., Phys. Rev. C 93, 044330 (2016)

    ADS  Google Scholar 

  71. D. Mengoni et al., Nucl. Instrum. Methods A 764, 241 (2014)

    ADS  Google Scholar 

  72. J. Endres et al., Phys. Rev. C 85, 064331 (2012)

    ADS  Google Scholar 

  73. J. Endres et al., Phys. Rev. C 80, 034302 (2009)

    ADS  Google Scholar 

  74. K. Govaert et al., Phys. Rev. C 57, 2229 (1998)

    ADS  Google Scholar 

  75. S. Volz et al., Nucl. Phys. A 779, 1 (2006)

    ADS  Google Scholar 

  76. A. Zilges et al., Phys. Lett. B 542, 43 (2002)

    ADS  Google Scholar 

  77. D. Savran et al., Phys. Lett. B 786, 16 (2018)

    ADS  Google Scholar 

  78. CAGRA web site, http://www.rcnp.osaka-u.ac.jp/Divisions/np1-a/CAGRA/index.html

  79. E. Tryggestad et al., Phys. Lett. B 541, 52 (2002)

    ADS  Google Scholar 

  80. A. Leistenschneider et al., Phys. Rev. Lett. 86, 5442 (2001)

    ADS  Google Scholar 

  81. N. Nakatsuka et al., Phys. Lett. B 768, 387 (2017)

    ADS  Google Scholar 

  82. D.M. Rossi et al., Phys. Rev. Lett. 111, 242503 (2013)

    ADS  Google Scholar 

  83. P. Axel, Phys. Rev. 126, 671 (1962)

    ADS  Google Scholar 

  84. J. Gibelin, Phys. Rev. Lett. 101, 212503 (2008)

    ADS  Google Scholar 

  85. P. Adrich et al., Phys. Rev. Lett. 95, 132501 (2005)

    ADS  Google Scholar 

  86. http://www.gsi.de/fair/experiments/NUSTAR/R3b.html and the R3B Collaboration (T. Aumann), R3B technical design report (2011) http://www.fair-center.eu/fileadmin/fair/publications_exp/NeuLAND-TDR-Web.pdf

  87. N.S. Martorana et al., Phys. Lett. B 782, 112 (2018)

    ADS  Google Scholar 

  88. A.C. Larsen et al., Phys. Rev. C 97, 054329 (2018)

    ADS  Google Scholar 

  89. R. Avigo, in preparation

  90. Y. Togano, in preparation

  91. T. Nakamura, Y. Kondo, Nucl. Instrum. Methods B 376, 156 (2016)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Camera.

Additional information

Communicated by N. Alamanos

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This paper is a review article, so all data are contained in this article or in the cited references.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bracco, A., Camera, F., Crespi, F.C.L. et al. Gamma-decay from dipole vibrations: Probe for nuclear properties. Eur. Phys. J. A 55, 233 (2019). https://doi.org/10.1140/epja/i2019-12887-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12887-x

Navigation