Improved STEREO simulation with a new gamma ray spectrum of excited gadolinium isotopes using FIFRELIN

Abstract.

The STEREO experiment measures the electron antineutrino spectrum emitted in a research reactor using the inverse beta decay reaction on H nuclei in a gadolinium loaded liquid scintillator. The detection is based on a signal coincidence of a prompt positron and a delayed neutron capture event. The simulated response of the neutron capture on gadolinium is crucial for the comparison with data, in particular in the case of the detection efficiency. Among all stable isotopes, 155Gd and 157Gd have the highest cross sections for thermal neutron capture. The excited nuclei after the neutron capture emit gamma rays with a total energy of about 8MeV. The complex level schemes of 156Gd and 158Gd are a challenge for the modeling and prediction of the deexcitation spectrum, especially for compact detectors where gamma rays can escape the active volume. With a new description of the Gd (n,\( \gamma\)) cascades obtained using the FIFRELIN code, the agreement between simulation and measurements with a neutron calibration source was significantly improved in the STEREO experiment. A database of ten millions of deexcitation cascades for each isotope has been generated and is now available for the user.

References

  1. 1

    N. Allemandou et al., JINST 13, P07009 (2018)

    Article  Google Scholar 

  2. 2

    H. Almazán et al., Phys. Rev. Lett. 121, 161801 (2018)

    ADS  Article  Google Scholar 

  3. 3

    C. Buck, B. Gramlich, M. Lindner, C. Roca, S. Schoppmann, JINST 14, P01027 (2019)

    ADS  Article  Google Scholar 

  4. 4

    I. Alekseev et al., Phys. Lett. B7 87, 56 (2018)

    Article  Google Scholar 

  5. 5

    D. Adey, Improved Measurement of the Reactor Antineutrino Flux at Daya Bay, arXiv:1808.10836 (2018)

  6. 6

    K. Hagiwara et al., Prog. Theor. Exp. Phys. 2019, 023D01 (2019)

    Article  Google Scholar 

  7. 7

    O. Litaize et al., Nucl. Data Sheets 118, 216 (2014)

    ADS  Article  Google Scholar 

  8. 8

    O. Litaize et al., Eur. Phys. J. A 51, 1 (2015)

    Article  Google Scholar 

  9. 9

    O. Litaize et al., EPJ Web of Conferences 169, 00012 (2018)

    Article  Google Scholar 

  10. 10

    F. Bečvář, Nucl. Instrum. Methods Phys. Res. A 417, 434 (1998)

    ADS  Article  Google Scholar 

  11. 11

    D. Regnier et al., Comput. Phys. Commun. 201, 19 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  12. 12

    D. Brown, M. Chadwick, R. Capote et al., Nucl. Data Sheets 148, 1 (2018)

    ADS  Article  Google Scholar 

  13. 13

    K.K. Shibata et al., J. Nucl. Sci. Technol. 48, 1 (2011)

    Article  Google Scholar 

  14. 14

    S.F. Mughabghab, Atlas of Neutron Resonances: Resonance Parameters and Thermal Cross Sections $Z=1-100$ (Elsevier Science, 2006)

  15. 15

    R. Capote et al., Nucl. Data Sheets 110, 3107 (2009)

    ADS  Article  Google Scholar 

  16. 16

    H.A. Bethe, Phys. Rev. 50, 332 (1936)

    ADS  Article  Google Scholar 

  17. 17

    A. Gilbert, A.G.W. Cameron, Can. J. Phys. 43, 1446 (1965)

    ADS  Article  Google Scholar 

  18. 18

    E. Porter, C.R.G. Thomas, Phys. Rev. 104, 483 (1956)

    ADS  Article  Google Scholar 

  19. 19

    T. Kibedi et al., Nucl. Instrum. Methods Phys. Res. A 589, 202 (2008)

    ADS  Article  Google Scholar 

  20. 20

    J. Kopecky, M. Uhl, Phys. Rev. C 41, 1941 (1990)

    ADS  Article  Google Scholar 

  21. 21

    D.M. Brink, Nucl. Phys. 4, 215 (1957)

    Article  Google Scholar 

  22. 22

    S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003)

    ADS  Article  Google Scholar 

  23. 23

    http://neutrino.phys.ksu.edu/GLG4sim/Gd.html

  24. 24

    J. Scherzinger et al., Appl. Radiat. Isot. 98, 74 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

Open Access funding provided by Max Planck Society.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Bonhomme.

Additional information

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: We make available ten millions of deexcitation cascades for each isotope at https://doi.org/10.5281/zenodo.2653786, since other running and upcoming projects might profit from these data as well.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by C. Broggini

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Almazán, H., Bernard, L., Blanchet, A. et al. Improved STEREO simulation with a new gamma ray spectrum of excited gadolinium isotopes using FIFRELIN. Eur. Phys. J. A 55, 183 (2019). https://doi.org/10.1140/epja/i2019-12886-y

Download citation