Skip to main content

Pion and kaon structure at the electron-ion collider

Abstract.

Understanding the origin and dynamics of hadron structure and in turn that of atomic nuclei is a central goal of nuclear physics. This challenge entails the questions of how does the roughly 1GeV mass-scale that characterizes atomic nuclei appear; why does it have the observed value; and, enigmatically, why are the composite Nambu-Goldstone (NG) bosons in quantum chromodynamics (QCD) abnormally light in comparison? In this perspective, we provide an analysis of the mass budget of the pion and proton in QCD; discuss the special role of the kaon, which lies near the boundary between dominance of strong and Higgs mass-generation mechanisms; and explain the need for a coherent effort in QCD phenomenology and continuum calculations, in exa-scale computing as provided by lattice QCD, and in experiments to make progress in understanding the origins of hadron masses and the distribution of that mass within them. We compare the unique capabilities foreseen at the electron-ion collider (EIC) with those at the hadron-electron ring accelerator (HERA), the only previous electron-proton collider; and describe five key experimental measurements, enabled by the EIC and aimed at delivering fundamental insights that will generate concrete answers to the questions of how mass and structure arise in the pion and kaon, the Standard Model's NG modes, whose surprisingly low mass is critical to the evolution of our Universe.

This is a preview of subscription content, access via your institution.

References

  1. 1

    J.M. Cornwall, Phys. Rev. D 26, 1453 (1982)

    ADS  Google Scholar 

  2. 2

    A.C. Aguilar, D. Binosi, J. Papavassiliou, Front. Phys. China 11, 111203 (2016)

    Google Scholar 

  3. 3

    T. Horn, C.D. Roberts, J. Phys. G 43, 073001 (2016)

    ADS  Google Scholar 

  4. 4

    Y. Nambu, Phys. Rev. 117, 648 (1960)

    ADS  MathSciNet  Google Scholar 

  5. 5

    J. Goldstone, Nuovo Cimento 19, 154 (1961)

    MathSciNet  Google Scholar 

  6. 6

    Particle Data Group (M. Tanabashi et al.), Phys. Rev. D 98, 030001 (2018)

    Google Scholar 

  7. 7

    M.S. Bhagwat, M.A. Pichowsky, C.D. Roberts, P.C. Tandy, Phys. Rev. C 68, 015203 (2003)

    ADS  Google Scholar 

  8. 8

    P.O. Bowman et al., Phys. Rev. D 71, 054507 (2005)

    ADS  Google Scholar 

  9. 9

    M.S. Bhagwat, P.C. Tandy, AIP Conf. Proc. 842, 225 (2006)

    ADS  Google Scholar 

  10. 10

    P. Maris, C.D. Roberts, P.C. Tandy, Phys. Lett. B 420, 267 (1998)

    ADS  Google Scholar 

  11. 11

    S.-X. Qin, C.D. Roberts, S.M. Schmidt, Phys. Lett. B 733, 202 (2014)

    ADS  Google Scholar 

  12. 12

    D. Binosi, L. Chang, S.-X. Qin, J. Papavassiliou, C.D. Roberts, Phys. Rev. D 93, 096010 (2016)

    ADS  Google Scholar 

  13. 13

    C.D. Roberts, Few Body Syst. 58, 5 (2017)

    ADS  Google Scholar 

  14. 14

    X.-D. Ji, Phys. Rev. D 52, 271 (1995)

    ADS  Google Scholar 

  15. 15

    Y.-B. Yang et al., Phys. Rev. Lett. 121, 212001 (2018) arXiv:1808.08677

    ADS  Google Scholar 

  16. 16

    C. Lorcé, Eur. Phys. J. C 78, 120 (2018) arXiv:1706.05853

    ADS  Google Scholar 

  17. 17

    D. Kharzeev, H. Satz, A. Syamtomov, G. Zinovjev, Eur. Phys. J. C 9, 459 (1999)

    ADS  Google Scholar 

  18. 18

    S. Joosten, Z.E. Meziani, PoS QCDEV2017, 017 (2018)

    Google Scholar 

  19. 19

    J. Tarrús Castellà, G. Krein, Phys. Rev. D 98, 014029 (2018)

    ADS  Google Scholar 

  20. 20

    M. Gell-Mann, R.J. Oakes, B. Renner, Phys. Rev. 175, 2195 (1968)

    ADS  Google Scholar 

  21. 21

    S.J. Brodsky, C.D. Roberts, R. Shrock, P.C. Tandy, Phys. Rev. C 85, 065202 (2012)

    ADS  Google Scholar 

  22. 22

    Y.-B. Yang et al., Phys. Rev. D 91, 074516 (2015)

    ADS  Google Scholar 

  23. 23

    C. Lorcé, JHEP 08, 045 (2015)

    ADS  MathSciNet  Google Scholar 

  24. 24

    Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)

    ADS  Google Scholar 

  25. 25

    V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)

    Google Scholar 

  26. 26

    L.N. Lipatov, Sov. J. Nucl. Phys. 20, 94 (1975)

    Google Scholar 

  27. 27

    G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)

    ADS  Google Scholar 

  28. 28

    G. Altarelli, Phys. Rep. 81, 1 (1982)

    ADS  Google Scholar 

  29. 29

    P.J. Sutton, A.D. Martin, R.G. Roberts, W.J. Stirling, Phys. Rev. D 45, 2349 (1992)

    ADS  Google Scholar 

  30. 30

    P.C. Barry, N. Sato, W. Melnitchouk, C.-R. Ji, Phys. Rev. Lett. 121, 152001 (2018)

    ADS  Google Scholar 

  31. 31

    V.V. Flambaum et al., Few Body Syst. 38, 31 (2006)

    ADS  Google Scholar 

  32. 32

    Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961)

    ADS  Google Scholar 

  33. 33

    G. Wang, J. Liang, T. Draper, K.-F. Liu, Y.-B. Yang, PoS LATTICE2018, 127 (2018)

    Google Scholar 

  34. 34

    A.J. Chambers et al., Phys. Rev. D 96, 114509 (2017)

    ADS  Google Scholar 

  35. 35

    J. Koponen, A.C. Zimermmane-Santos, C.T.H. Davies, G.P. Lepage, A.T. Lytle, Phys. Rev. D 96, 054501 (2017)

    ADS  Google Scholar 

  36. 36

    M. Chen, M. Ding, L. Chang, C.D. Roberts, Phys. Rev. D 98, 091505(R) (2018)

    ADS  Google Scholar 

  37. 37

    S.J. Brodsky, G.F. de Teramond, Phys. Rev. Lett. 96, 201601 (2006)

    ADS  Google Scholar 

  38. 38

    L. Chang et al., Phys. Rev. Lett. 110, 132001 (2013)

    ADS  Google Scholar 

  39. 39

    J.-H. Zhang, J.-W. Chen, X. Ji, L. Jin, H.-W. Lin, Phys. Rev. D 95, 094514 (2017)

    ADS  Google Scholar 

  40. 40

    S. Jia, J.P. Vary, Phys. Rev. C 99, 035206 (2019)

    ADS  Google Scholar 

  41. 41

    G.S. Bali et al., Phys. Rev. D 98, 094507 (2018)

    ADS  MathSciNet  Google Scholar 

  42. 42

    J. Volmer et al., Phys. Rev. Lett. 86, 1713 (2001)

    ADS  Google Scholar 

  43. 43

    T. Horn et al., Phys. Rev. Lett. 97, 192001 (2006)

    ADS  Google Scholar 

  44. 44

    T. Horn et al., Phys. Rev. C 78, 058201 (2008)

    ADS  Google Scholar 

  45. 45

    H.P. Blok et al., Phys. Rev. C 78, 045202 (2008)

    ADS  Google Scholar 

  46. 46

    G. Huber et al., Phys. Rev. C 78, 045203 (2008)

    ADS  Google Scholar 

  47. 47

    G.M. Huber, D. Gaskell, Measurement of the Charged Pion Form Factor to High $Q^2$, approved Jefferson Lab 12GeV Experiment E12-06-101 (2006)

  48. 48

    T. Horn, G.M. Huber, Scaling Study of the L/T-Separated Pion Electroproduction Cross Section at 11GeV, approved Jefferson Lab 12GeV Experiment E12-07-105 (2007)

  49. 49

    T. Horn, EPJ Web of Conferences 137, 05005 (2017)

    Google Scholar 

  50. 50

    J.D. Sullivan, Phys. Rev. D 5, 1732 (1972)

    ADS  Google Scholar 

  51. 51

    W. Melnitchouk, A.W. Thomas, Z. Phys. A 353, 311 (1995)

    ADS  Google Scholar 

  52. 52

    Y. Salamu, C.-R. Ji, W. Melnitchouk, P. Wang, Phys. Rev. Lett. 114, 122001 (2015)

    ADS  Google Scholar 

  53. 53

    Y. Salamu, C.-R. Ji, W. Melnitchouk, A.W. Thomas, P. Wang, Phys. Rev. D 99, 014041 (2019)

    ADS  Google Scholar 

  54. 54

    S.-X. Qin, C. Chen, C. Mezrag, C.D. Roberts, Phys. Rev. C 97, 015203 (2018)

    ADS  Google Scholar 

  55. 55

    ZEUS Calorimeter Group (A. Andresen et al.), Nucl. Instrum. Methods A 290, 95 (1990)

    ADS  Google Scholar 

  56. 56

    E. Di Capua et al., Nucl. Instrum. Methods A 378, 221 (1996)

    ADS  Google Scholar 

  57. 57

    S. Lee et al., Nucl. Instrum. Methods A 866, 76 (2017)

    ADS  Google Scholar 

  58. 58

    S. Chekanov et al., Nucl. Phys. B 776, 1 (2007)

    ADS  Google Scholar 

  59. 59

    D. Adikaram, Measurement of Tagged Deep Inelastic Scattering (TDIS), approved Jefferson Lab experiment E12-15-006 (2015)

  60. 60

    D. Adikaram, Measurement of kaon Structure Function through Tagged Deep Inelastic Scattering (TDIS), approved Jefferson Lab experiment C12-15-006A (2015)

  61. 61

    J.R. McKenney, N. Sato, W. Melnitchouk, C.-R. Ji, Phys. Rev. D 93, 054011 (2016)

    ADS  Google Scholar 

  62. 62

    M. Ding, Symmetry, symmetry breaking, and pion parton distributions, arXiv:1905.05208 [nucl-th]

  63. 63

    O. Denisov, Letter of Intent (Draft 2.0): A New QCD facility at the M2 beam line of the CERN SPS, arXiv:1808.00848 [hep-ex]

  64. 64

    K. Wijesooriya, P.E. Reimer, R.J. Holt, Phys. Rev. C 72, 065203 (2005)

    ADS  Google Scholar 

  65. 65

    M. Aicher, A. Schäfer, W. Vogelsang, Phys. Rev. Lett. 105, 252003 (2010)

    ADS  Google Scholar 

  66. 66

    K. Kovařík, P.M. Nadolsky, D.E. Soper, Hadron structure in high-energy collisions, arXiv:1905.06957 [hep-ph]

  67. 67

    W. Broniowski, E. Ruiz Arriola, Phys. Rev. D 78, 094011 (2008)

    ADS  Google Scholar 

  68. 68

    T. Frederico, E. Pace, B. Pasquini, G. Salme, Phys. Rev. D 80, 054021 (2009)

    ADS  Google Scholar 

  69. 69

    C. Mezrag et al., Phys. Lett. B 741, 190 (2015)

    ADS  Google Scholar 

  70. 70

    S. Kumano, Q.-T. Song, O.V. Teryaev, Phys. Rev. D 97, 014020 (2018)

    ADS  Google Scholar 

  71. 71

    G.F. de Teramond et al., Phys. Rev. Lett. 120, 182001 (2018)

    ADS  Google Scholar 

  72. 72

    P.E. Shanahan, W. Detmold, Phys. Rev. D 99, 014511 (2019)

    ADS  Google Scholar 

  73. 73

    J. Lan, C. Mondal, S. Jia, X. Zhao, J.P. Vary, Phys. Rev. Lett. 122, 172001 (2019)

    ADS  Google Scholar 

  74. 74

    C. Lorcé, B. Pasquini, P. Schweitzer, Eur. Phys. J. C 76, 415 (2016)

    ADS  Google Scholar 

  75. 75

    M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 136, 157 (1978) (Yad. Fiz. 27

    ADS  Google Scholar 

  76. 76

    Y.-B. Yang et al., Phys. Rev. D 98, 074506 (2018)

    ADS  Google Scholar 

  77. 77

    D. Binosi, C. Mezrag, J. Papavassiliou, C.D. Roberts, J. Rodríguez-Quintero, Phys. Rev. D 96, 054026 (2017)

    ADS  Google Scholar 

  78. 78

    J. Rodríguez-Quintero, D. Binosi, C. Mezrag, J. Papavassiliou, C.D. Roberts, Few Body Syst. 59, 121 (2018)

    ADS  Google Scholar 

  79. 79

    G.P. Lepage, S.J. Brodsky, Phys. Lett. B 87, 359 (1979)

    ADS  Google Scholar 

  80. 80

    A.V. Efremov, A.V. Radyushkin, Phys. Lett. B 94, 245 (1980)

    ADS  Google Scholar 

  81. 81

    G.P. Lepage, S.J. Brodsky, Phys. Rev. D 22, 2157 (1980)

    ADS  Google Scholar 

  82. 82

    L. Chang, I.C. Cloët, C.D. Roberts, S.M. Schmidt, P.C. Tandy, Phys. Rev. Lett. 111, 141802 (2013)

    ADS  Google Scholar 

  83. 83

    F. Gao, L. Chang, Y.-X. Liu, C.D. Roberts, P.C. Tandy, Phys. Rev. D 96, 034024 (2017)

    ADS  Google Scholar 

  84. 84

    C. Chen, L. Chang, C.D. Roberts, S. Wan, H.-S. Zong, Phys. Rev. D 93, 074021 (2016)

    ADS  Google Scholar 

  85. 85

    S.-S. Xu, L. Chang, C.D. Roberts, H.-S. Zong, Phys. Rev. D 97, 094014 (2018)

    ADS  Google Scholar 

  86. 86

    J. Badier et al., Phys. Lett. B 93, 354 (1980)

    ADS  Google Scholar 

  87. 87

    K.-F. Liu, S.-J. Dong, Phys. Rev. Lett. 72, 1790 (1994)

    ADS  Google Scholar 

  88. 88

    X. Ji, Phys. Rev. Lett. 110, 262002 (2013)

    ADS  Google Scholar 

  89. 89

    A. Radyushkin, Phys. Lett. B 767, 314 (2017)

    ADS  MathSciNet  Google Scholar 

  90. 90

    A.V. Radyushkin, Phys. Rev. D 96, 034025 (2017)

    ADS  MathSciNet  Google Scholar 

  91. 91

    A.J. Chambers et al., Phys. Rev. Lett. 118, 242001 (2017)

    ADS  Google Scholar 

  92. 92

    J.-W. Chen, First direct lattice-QCD calculation of the $x$-dependence of the pion parton distribution function, arXiv:1804.01483 [hep-lat]

  93. 93

    N. Karthik et al., PoS LATTICE2018, 109 (2018)

    Google Scholar 

  94. 94

    J. Karpie, K. Orginos, A. Rothkopf, S. Zafeiropoulos, JHEP 04, 057 (2019)

    ADS  Google Scholar 

  95. 95

    R.S. Sufian et al., Phys. Rev. D 99, 074507 (2019)

    ADS  Google Scholar 

  96. 96

    T. Izubuchi, Valence parton distribution function of pion from fine lattice, arXiv:1905.06349 [hep-lat]

  97. 97

    C. Best et al., Phys. Rev. D 56, 2743 (1997)

    ADS  Google Scholar 

  98. 98

    W. Detmold, W. Melnitchouk, A.W. Thomas, Phys. Rev. D 68, 034025 (2003)

    ADS  Google Scholar 

  99. 99

    D. Brommel et al., PoS LAT2007, 140 (2007)

    Google Scholar 

  100. 100

    M. Oehm et al., Phys. Rev. D 99, 014508 (2019)

    ADS  Google Scholar 

  101. 101

    M.B. Hecht, C.D. Roberts, S.M. Schmidt, Phys. Rev. C 63, 025213 (2001)

    ADS  Google Scholar 

  102. 102

    L. Chang et al., Phys. Lett. B 737, 23 (2014)

    ADS  Google Scholar 

  103. 103

    J.S. Conway et al., Phys. Rev. D 39, 92 (1989)

    ADS  Google Scholar 

  104. 104

    V.N. Gribov, L.N. Lipatov, Phys. Lett. B 37, 78 (1971)

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Craig D. Roberts.

Additional information

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: All data generated during this study are contained in this published article.]

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by N. Alamanos

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aguilar, A.C., Ahmed, Z., Aidala, C. et al. Pion and kaon structure at the electron-ion collider. Eur. Phys. J. A 55, 190 (2019). https://doi.org/10.1140/epja/i2019-12885-0

Download citation