Skip to main content
Log in

Quarks and light (pseudo-)scalar mesons at finite chemical potential

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We investigate the properties of light scalar and pseudoscalar mesons at finite (light) quark chemical potential. To this end we solve a coupled set of (truncated) Dyson-Schwinger equations for the quark and gluon propagators in Landau-gauge QCD and extend earlier results for \( N_{\mathrm{f}} = 2+1\) dynamical quark flavors to finite chemical potential at zero temperature. We then determine the meson bound state masses, wave functions, and decay constants for chemical potentials below the first-order phase transition from their homogeneous Bethe-Salpeter equation. We study the changes in the quark dressing functions and Bethe-Salpeter wave functions with chemical potential. In particular, we trace charge-conjugation parity breaking. Furthermore, we confirm the validity of the Silver-Blaze property: all dependencies of colored quantities on chemical potential cancel out in observables and we observe constant masses and decay constants up to and into the coexistence region of the first-order chiral phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Borsányi et al., JHEP 09, 73 (2010) arXiv:1005.3508 [hep-ph]

    Article  ADS  Google Scholar 

  2. A. Bazavov et al., Phys. Rev. D 85, 054503 (2012) arXiv:1111.1710 [hep-lat]

    Article  ADS  Google Scholar 

  3. T. Bhattacharya et al., Phys. Rev. Lett. 113, 082001 (2014) arXiv:1402.5175 [hep-lat]

    Article  ADS  Google Scholar 

  4. A. Bazavov et al., Phys. Rev. D 90, 094503 (2014) arXiv:1407.6387 [hep-lat]

    Article  ADS  Google Scholar 

  5. M. Drews, W. Weise, Prog. Part. Nucl. Phys. 93, 69 (2017) arXiv:1610.07568 [nucl-th]

    Article  ADS  Google Scholar 

  6. K. Fukushima, V. Skokov, Prog. Part. Nucl. Phys. 96, 154 (2017) arXiv:1705.00718 [hep-ph]

    Article  ADS  Google Scholar 

  7. C.S. Fischer, Prog. Part. Nucl. Phys. 105, 1 (2019) arXiv:1810.12938 [hep-ph]

    Article  ADS  Google Scholar 

  8. T.D. Cohen, R.J. Furnstahl, D.K. Griegel, Phys. Rev. C 45, 1881 (1992)

    Article  ADS  Google Scholar 

  9. T.D. Cohen, arXiv:hep-ph/0405043 (2004)

  10. M. Fromm, J. Langelage, S. Lottini, M. Neuman, O. Philipsen, Phys. Rev. Lett. 110, 122001 (2013) arXiv:1207.3005 [hep-lat]

    Article  ADS  Google Scholar 

  11. R. Rapp, J. Wambach, Adv. Nucl. Phys. 25, 1 (2000) arXiv:hep-ph/9909229 [hep-ph]

    Google Scholar 

  12. S. Leupold, V. Metag, U. Mosel, Int. J. Mod. Phys. E 19, 147 (2010) arXiv:0907.2388 [nucl-th]

    Article  ADS  Google Scholar 

  13. V. Skokov, B. Stokic, B. Friman, K. Redlich, Phys. Rev. C 82, 015206 (2010) arXiv:1004.2665 [hep-ph]

    Article  ADS  Google Scholar 

  14. T.K. Herbst, J.M. Pawlowski, B.-J. Schaefer, Phys. Lett. B 696, 58 (2011) arXiv:1008.0081 [hep-ph]

    Article  ADS  Google Scholar 

  15. T.K. Herbst, J.M. Pawlowski, B.-J. Schaefer, Phys. Rev. D 88, 014007 (2013) arXiv:1302.1426 [hep-ph]

    Article  ADS  Google Scholar 

  16. R.-A. Tripolt, B.-J. Schaefer, L. von Smekal, J. Wambach, Phys. Rev. D 97, 034022 (2018) arXiv:1709.05991 [hep-ph]

    Article  ADS  Google Scholar 

  17. S. Resch, F. Rennecke, B.-J. Schaefer, Phys. Rev. D 99, 076005 (2019) arXiv:1712.07961 [hep-ph]

    Article  ADS  Google Scholar 

  18. T. Horn, C.D. Roberts, J. Phys. G 43, 073001 (2016) arXiv:1602.04016 [nucl-th]

    Article  ADS  Google Scholar 

  19. P. Maris, C.D. Roberts, S.M. Schmidt, Phys. Rev. C 57, R2821 (1998) arXiv:nucl-th/9801059 [nucl-th]

    Article  ADS  Google Scholar 

  20. A. Bender, G.I. Poulis, C.D. Roberts, S.M. Schmidt, A.W. Thomas, Phys. Lett. B 431, 263 (1998) arXiv:nucl-th/9710069 [nucl-th]

    Article  ADS  Google Scholar 

  21. H.-s. Zong, L. Chang, F.-y. Hou, W.-m. Sun, Y.-x. Liu, Phys. Rev. C 71, 015205 (2005)

    Article  ADS  Google Scholar 

  22. Y. Jiang, Y.-m. Shi, H.-t. Feng, W.-m. Sun, H.-s. Zong, Phys. Rev. C 78, 025214 (2008)

    Article  ADS  Google Scholar 

  23. Y. Jiang, Y.-m. Shi, H. Li, W.-m. Sun, H.-s. Zong, Phys. Rev. D 78, 116005 (2008) arXiv:0810.0750 [nucl-th]

    Article  ADS  Google Scholar 

  24. G. Eichmann, C.S. Fischer, C.A. Welzbacher, Phys. Rev. D 93, 034013 (2016) arXiv:1509.02082 [hep-ph]

    Article  ADS  Google Scholar 

  25. C.S. Fischer, Phys. Rev. Lett. 103, 052003 (2009) arXiv:0904.2700 [hep-ph]

    Article  ADS  Google Scholar 

  26. C.S. Fischer, A. Maas, J.A. Müller, Eur. Phys. J. C 68, 165 (2010) arXiv:1003.1960 [hep-ph]

    Article  ADS  Google Scholar 

  27. C.S. Fischer, J.A. Mueller, Phys. Rev. D 84, 054013 (2011) arXiv:1106.2700 [hep-ph]

    Article  ADS  Google Scholar 

  28. C.S. Fischer, J. Luecker, J.A. Mueller, Phys. Lett. B 702, 438 (2011) arXiv:1104.1564 [hep-ph]

    Article  ADS  Google Scholar 

  29. C.S. Fischer, J. Luecker, Phys. Lett. B 718, 1036 (2013) arXiv:1206.5191 [hep-ph]

    Article  ADS  Google Scholar 

  30. C.S. Fischer, J. Luecker, C.A. Welzbacher, Phys. Rev. D 90, 034022 (2014) arXiv:1405.4762 [hep-ph]

    Article  ADS  Google Scholar 

  31. D. Müller, M. Buballa, J. Wambach, Eur. Phys. J. A 49, 96 (2013) arXiv:1303.2693 [hep-ph]

    Article  ADS  Google Scholar 

  32. D. Müller, M. Buballa, J. Wambach, arXiv:1603.02865 [hep-ph] (2016)

  33. A. Maas, J.M. Pawlowski, L. von Smekal, D. Spielmann, Phys. Rev. D 85, 034037 (2012) arXiv:1110.6340 [hep-lat]

    Article  ADS  Google Scholar 

  34. C.S. Fischer, L. Fister, J. Lücker, J.M. Pawlowski, Phys. Lett. B 732, 273 (2014) arXiv:1306.6022 [hep-lat]

    Article  ADS  Google Scholar 

  35. R. Aouane, F. Burger, E.M. Ilgenfritz, M. Müller-Preussker, A. Sternbeck, Phys. Rev. D 87, 114502 (2013) arXiv:1212.1102 [hep-lat]

    Article  ADS  Google Scholar 

  36. J.C. Taylor, Nucl. Phys. B 33, 436 (1971)

    Article  ADS  Google Scholar 

  37. P. Isserstedt, M. Buballa, C.S. Fischer, P.J. Gunkel, arXiv:1906.11644 [hep-ph] (2019)

  38. J. Braun, L. Fister, J.M. Pawlowski, F. Rennecke, Phys. Rev. D 94, 034016 (2016) arXiv:1412.1045 [hep-ph]

    Article  ADS  Google Scholar 

  39. R. Williams, C.S. Fischer, W. Heupel, Phys. Rev. D 93, 034026 (2016) arXiv:1512.00455 [hep-ph]

    Article  ADS  Google Scholar 

  40. J.S. Ball, T.-W. Chiu, Phys. Rev. D 22, 2542 (1980)

    Article  ADS  Google Scholar 

  41. W. Heupel, T. Goecke, C.S. Fischer, Eur. Phys. J. A 50, 85 (2014) arXiv:1402.5042 [hep-ph]

    Article  ADS  Google Scholar 

  42. R. Bellwied et al., Phys. Lett. B 751, 559 (2015) arXiv:1507.07510 [hep-lat]

    Article  ADS  Google Scholar 

  43. A. Bazavov et al., Phys. Lett. B 795, 15 (2019) arXiv:1812.08235 [hep-lat]

    Article  ADS  MathSciNet  Google Scholar 

  44. H. Sanchis-Alepuz, R. Williams, Comput. Phys. Commun. 232, 1 (2018) arXiv:1710.04903 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  45. G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer, C.S. Fischer, Prog. Part. Nucl. Phys. 91, 1 (2016) arXiv:1606.09602 [hep-ph]

    Article  ADS  Google Scholar 

  46. N. Nakanishi, Phys. Rev. 138, B1182 (1965)

    Article  ADS  Google Scholar 

  47. D.T. Son, M.A. Stephanov, Phys. Rev. Lett. 88, 202302 (2002) arXiv:0111100 [hep-ph]

    Article  ADS  Google Scholar 

  48. D.T. Son, M.A. Stephanov, Phys. Rev. D 66, 076011 (2002) arXiv:0204226 [hep-ph]

    Article  ADS  Google Scholar 

  49. R. Williams, C.S. Fischer, M.R. Pennington, Phys. Lett. B 645, 167 (2007) arXiv:hep-ph/0612061 [hep-ph]

    Article  ADS  Google Scholar 

  50. L. Chang, Y.-X. Liu, M.S. Bhagwat, C.D. Roberts, S.V. Wright, Phys. Rev. C 75, 015201 (2007) arXiv:nucl-th/0605058 [nucl-th]

    Article  ADS  Google Scholar 

  51. C.S. Fischer, D. Nickel, R. Williams, Eur. Phys. J. C 60, 47 (2009) arXiv:0807.3486 [hep-ph]

    Article  ADS  Google Scholar 

  52. P. Maris, C.D. Roberts, P.C. Tandy, Phys. Lett. B 420, 267 (1998) arXiv:nucl-th/9707003 [nucl-th]

    Article  ADS  Google Scholar 

  53. W. Detmold, Nonperturbative approaches to quantum chromodynamics, PhD Thesis, University of Adelaide, Australia (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian S. Fischer.

Additional information

Communicated by R. Alkofer

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunkel, P.J., Fischer, C.S. & Isserstedt, P. Quarks and light (pseudo-)scalar mesons at finite chemical potential. Eur. Phys. J. A 55, 169 (2019). https://doi.org/10.1140/epja/i2019-12868-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12868-1

Navigation