Skip to main content
Log in

Study of charged particle multiplicity, average transverse momentum and azimuthal anisotropy in Xe+Xe collisions at \(\sqrt{s_{NN}} = 5.44\) TeV using AMPT model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We have studied the average charged particle density (\(\langle \mathrm{d} \mathrm{N}_{ch}/\mathrm{d} \eta\rangle\)), transverse momentum (\( p_{\mathrm{T}}\)) spectra, average transverse momentum (\( \langle p_{\mathrm{T}}\rangle\)) and azimuthal anisotropies of inclusive charged particles produced in Xe+Xe collisions at \(\sqrt{s_{\mathrm{NN}}} = 5.44\) TeV using A Multiphase Transport Model (AMPT), which includes the deformation of 129Xe nucleus. Calculations have been performed with the string melting version of AMPT model and compared with the recent measurements from the ALICE experiment. The model result overestimates the measured \( \langle \mathrm{d} \mathrm{N}_{ch}/\mathrm{d} \eta\rangle\) for central collisions, agrees with the data for mid-central collisions and underestimates the measurements for the peripheral collisions. The centrality dependence of \( \langle p_{\mathrm{T}}\rangle\) of charged particles measured in ALICE is not reproduced by the model results. The calculated elliptic flow (\(v_{2}\)) from AMPT model is larger than the ALICE measurements in central collisions but is consistent with the data for 30-50% collisions centrality. We find that the model shows a mild centrality dependence of triangular flow and overestimates the ALICE measurements. Within the model framework, we have also studied various collision configurations of Xe nuclei such as body-body, tip-tip, side-side and random. We find a strong dependence of the above observable on the collision configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Molnar, S.A. Voloshin, Phys. Rev. Lett. 91, 092301 (2003) arXiv:nucl-th/0302014

    Article  ADS  Google Scholar 

  2. STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 92, 052302 (2004) arXiv:nucl-ex/0306007

    Article  Google Scholar 

  3. M. Gyulassy, M. Plumer, Phys. Lett. B 243, 432 (1990)

    Article  ADS  Google Scholar 

  4. BRAHMS Collaboration (I. Arsene et al.), Nucl. Phys. A 757, 1 (2005) arXiv:nucl-ex/0410020

    Article  Google Scholar 

  5. B.B. Back et al., Nucl. Phys. A 757, 28 (2005) arXiv:nucl-ex/0410022

    Article  ADS  Google Scholar 

  6. STAR Collaboration (J. Adams et al.), Nucl. Phys. A 757, 102 (2005) arXiv:nucl-ex/0501009

    Article  ADS  Google Scholar 

  7. PHENIX Collaboration (K. Adcox et al.), Nucl. Phys. A 757, 184 (2005) arXiv:nucl-ex/0410003

    Article  ADS  Google Scholar 

  8. U.W. Heinz, M. Jacob, arXiv:nucl-th/0002042

  9. ALICE Collaboration (K. Aamodt et al.), Phys. Rev. Lett. 105, 252302 (2010) arXiv:1011.3914 [nucl-ex]

    Article  ADS  Google Scholar 

  10. ALICE Collaboration (S. Acharya et al.), Phys. Lett. B 784, 82 (2018) arXiv:1805.01832 [nucl-ex]

    Article  ADS  Google Scholar 

  11. P. Mäller, A.J. Sierk, T. Ichikawa, H. Sagawa, At. Data Nucl. Data Tabl. 109-110, 1 (2016) arXiv:1508.06294 [nucl-th]

    Article  ADS  Google Scholar 

  12. H. Masui, B. Mohanty, N. Xu, Phys. Lett. B 679, 440 (2009) arXiv:0907.0202 [nucl-th]

    Article  ADS  Google Scholar 

  13. B. Schenke, P. Tribedy, R. Venugopalan, Phys. Rev. C 89, 064908 (2014) arXiv:1403.2232 [nucl-th]

    Article  ADS  Google Scholar 

  14. P. Filip, R. Lednicky, H. Masui, N. Xu, Phys. Rev. C 80, 054903 (2009)

    Article  ADS  Google Scholar 

  15. G. Giacalone, J. Noronha-Hostler, M. Luzum, J.Y. Ollitrault, Phys. Rev. C 97, 034904 (2018) arXiv:1711.08499 [nucl-th]

    Article  ADS  Google Scholar 

  16. K.J. Eskola, H. Niemi, R. Paatelainen, K. Tuominen, Phys. Rev. C 97, 034911 (2018) arXiv:1711.09803 [hep-ph]

    Article  ADS  Google Scholar 

  17. D. Kharzeev, Phys. Lett. B 633, 260 (2006) arXiv:hep-ph/0406125

    Article  ADS  Google Scholar 

  18. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A 803, 227 (2008) arXiv:0711.0950 [hep-ph]

    Article  ADS  Google Scholar 

  19. S.A. Voloshin, Phys. Rev. C 70, 057901 (2004) arXiv:hep-ph/0406311

    Article  ADS  Google Scholar 

  20. D.E. Kharzeev, J. Liao, S.A. Voloshin, G. Wang, Prog. Part. Nucl. Phys. 88, 1 (2016) arXiv:1511.04050 [hep-ph]

    Article  ADS  Google Scholar 

  21. S.A. Voloshin, Phys. Rev. C 98, 054911 (2018) arXiv:1805.05300 [nucl-ex]

    Article  ADS  Google Scholar 

  22. STAR Collaboration (B.I. Abelev et al.), Phys. Rev. Lett. 103, 251601 (2009) arXiv:0909.1739 [nucl-ex]

    Article  Google Scholar 

  23. STAR Collaboration (B.I. Abelev et al.), Phys. Rev. C 81, 054908 (2010) arXiv:0909.1717 [nucl-ex]

    Article  ADS  Google Scholar 

  24. ALICE Collaboration (B. Abelev et al.), Phys. Rev. Lett. 110, 012301 (2013) arXiv:1207.0900 [nucl-ex]

    Article  ADS  Google Scholar 

  25. ALICE Collaboration (S. Acharya et al.), Phys. Lett. B 777, 151 (2018) arXiv:1709.04723 [nucl-ex]

    Article  ADS  Google Scholar 

  26. S. Chatterjee, P. Tribedy, Phys. Rev. C 92, 011902 (2015) arXiv:1412.5103 [nucl-th]

    Article  ADS  Google Scholar 

  27. ALICE Collaboration (S. Acharya et al.), Phys. Lett. B 788, 166 (2019) arXiv:1805.04399 [nucl-ex]

    Article  ADS  Google Scholar 

  28. A. Goldschmidt, Z. Qiu, C. Shen, U. Heinz, Phys. Rev. C 92, 044903 (2015) arXiv:1507.03910 [nucl-th]

    Article  ADS  Google Scholar 

  29. V. Bairathi, M.R. Haque, B. Mohanty, Phys. Rev. C 91, 054903 (2015) arXiv:1504.04719 [nucl-ex]

    Article  ADS  Google Scholar 

  30. Z.W. Lin, C.M. Ko, B.A. Li, B. Zhang, S. Pal, Phys. Rev. C 72, 064901 (2005) arXiv:nucl-th/0411110

    Article  ADS  Google Scholar 

  31. J. Xu, C.M. Ko, Phys. Rev. C 83, 034904 (2011) arXiv:1101.2231 [nucl-th]

    Article  ADS  Google Scholar 

  32. X.N. Wang, M. Gyulassy, Phys. Rev. D 44, 3501 (1991)

    Article  ADS  Google Scholar 

  33. B. Zhang, Comput. Phys. Commun. 109, 193 (1998) arXiv:nucl-th/9709009

    Article  ADS  Google Scholar 

  34. B.A. Li, C.M. Ko, Phys. Rev. C 52, 2037 (1995) arXiv:nucl-th/9505016

    Article  ADS  Google Scholar 

  35. Z.W. Lin, Phys. Rev. C 90, 014904 (2014) arXiv:1403.6321 [nucl-th]

    Article  ADS  Google Scholar 

  36. G.L. Ma, Z.W. Lin, Phys. Rev. C 93, 054911 (2016) arXiv:1601.08160 [nucl-th]

    Article  ADS  Google Scholar 

  37. K. Hagino, N.W. Lwin, M. Yamagami, Phys. Rev. C 74, 017310 (2006) arXiv:nucl-th/0604048

    Article  ADS  Google Scholar 

  38. M.R. Haque, Z.W. Lin, B. Mohanty, Phys. Rev. C 85, 034905 (2012) arXiv:1112.2340 [nucl-ex]

    Article  ADS  Google Scholar 

  39. ALICE Collaboration (S. Acharya et al.), Phys. Lett. B 790, 35 (2019) arXiv:1805.04432 [nucl-ex]

    Article  ADS  Google Scholar 

  40. ALICE Collaboration (J. Adam et al.), Phys. Rev. Lett. 116, 222302 (2016) arXiv:1512.06104 [nucl-ex]

    Article  ADS  Google Scholar 

  41. B. Alver, G. Roland, Phys. Rev. C 81, 054905 (2010) Phys. Rev. C 82

    Article  ADS  Google Scholar 

  42. S. Voloshin, Y. Zhang, Z. Phys. C 70, 665 (1996) arXiv:hep-ph/9407282

    Article  Google Scholar 

  43. STAR Collaboration (C. Adler et al.), Phys. Rev. C 66, 034904 (2002) arXiv:nucl-ex/0206001

    Article  Google Scholar 

  44. A. Bzdak, G.L. Ma, Phys. Rev. Lett. 113, 252301 (2014) arXiv:1406.2804 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bedangadas Mohanty.

Additional information

Communicated by L. Tolos

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article and numerical data files are available upon request.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, S., Mallick, D. & Mohanty, B. Study of charged particle multiplicity, average transverse momentum and azimuthal anisotropy in Xe+Xe collisions at \(\sqrt{s_{NN}} = 5.44\) TeV using AMPT model. Eur. Phys. J. A 55, 157 (2019). https://doi.org/10.1140/epja/i2019-12853-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12853-8

Navigation