Skip to main content

Advertisement

Log in

Physical design and evaluation of a high-intensity accelerator-based D-D/D-T fusion neutron source

  • Special Article - New Tools and Techniques
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

A high-intensity accelerator-based D-D/D-T fusion neutron source (ZF-400) with a thick adsorption target is designed with an intensity of \( 10^{13}\) n/s. A high-current microwave ion source is used to produce a large current deuteron beam, and neutrons are generated by irradiating the deuteron beam on a deuterium-adsorption target or tritium-adsorption target. According to the particle-in-cell (PIC) code, the length of the whole high-current D+ beam transport line is 500cm, the D+ beam transfer efficiency is up to 96%, and various components can match each other. On the rotating target, the D+ beam spot size is about 20.0 mm with energy of 450 keV. Based on the heat conduction theory, the thick adsorption rotating target with water-cooling can withstand the D+ ions beam with 450 kV/50 mA and ensure that the temperature is less than 200 °C. According to the multi-layer computing model, neutron energy spectra, angular distributions and yields for the thick target can be calculated with remarkable precision. The neutron energy spectra are non-mono-energetic neutrons for the ZF-400 neutron generator, the neutron angular distributions are anisotropic distributions, and they can provide neutrons with an intensity of \( 2.8\times 10^{11}\) n/s (D-D) and \( 1.4\times 10^{13}\) n/s (D-T), respectively, with the deuteron of 450 keV/50 mA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ojaruega, F.D. Becchetti, A.N. Villano et al., Nucl. Instrum. Methods Phys. Res. A 652, 397 (2011)

    Article  ADS  Google Scholar 

  2. V.V. Shirokov, in Proceedings of EPAC, Lucerne, Switzerland 2004, edited by C. Petit-Jean-Genaz (JACoW, Geneva, 2004)

  3. M. Febbraro, F.D. Becchetti, R.O. Torres-Isea et al., Phys. Rev. C 96, 024613 (2017)

    Article  ADS  Google Scholar 

  4. Z.E. Yao, H.X. Du, X.J. Tan et al., Chin. J. Comput. Phys. 25, 744 (2008)

    Google Scholar 

  5. Z.E. Yao, W.M. Yue, P. Luo et al., At. Energy Sci. Technol. 42, 400 (2008)

    Google Scholar 

  6. M.E. Capoulat, A.J. Kreiner, Phys. Med. 33, 106 (2017)

    Article  Google Scholar 

  7. L. Oláh, A.M. El-Megrab, A. Fenyvesi et al., Nucl. Instrum. Methods Phys. Res. A 404, 373 (1998)

    Article  ADS  Google Scholar 

  8. H. Sadeghi, R. Amrollahi, M. Zare, S. Fazelpour, Plasma Phys. Control. Fusion 59, 125006 (2017)

    Article  ADS  Google Scholar 

  9. V.M. Bystritsky, G.N. Dudkin, S.I. Kuanetsov et al., J. Surf. Investig. 11, 580 (2017)

    Article  Google Scholar 

  10. C.L. Lan, J. Wang, T. Ye et al., Chin. Phys. C 34, 022401 (2017)

    Google Scholar 

  11. J.F. Zhang, X.C. Ruan, L. Hou et al., High Power Laser Part. Beams 23, 209 (2011)

    Article  Google Scholar 

  12. Z. Wei, Y. Yan, Z.E. Yao et al., Phys. Rev. C 87, 054605 (2013)

    Article  ADS  Google Scholar 

  13. Z. Wei, J.R. Wang, Y.L. Zhang et al., Chin. Phys. C 43, 054001 (2019)

    Article  ADS  Google Scholar 

  14. A. Mattera, S. pomp, M. Lantz et al., Eur. Phys. J. A 53, 173 (2017)

    Article  ADS  Google Scholar 

  15. M. Angelone, D. Flammini, S. Loreti et al., Fusion Eng. Des. 109, 843 (2016)

    Article  Google Scholar 

  16. Y.L. Zhang, X.C. Ruan, H.X. Huang et al., Eur. Phys. J. A 53, 236 (2017)

    Article  ADS  Google Scholar 

  17. J.P. Meulders, P. Leleux, P.C. Macq et al., Phys. Med. Biol. 20, 235 (1975)

    Article  Google Scholar 

  18. S.Yu. Taskaev, V.V. Kanygin, V.A. Byvaltsev et al., Biomed. Eng. 52, 73 (2018)

    Article  Google Scholar 

  19. S. Bishnoi, P.S. Sarkar, R.G. Thomas et al., J. Nondestruct. Eval. 38, 13 (2019)

    Article  Google Scholar 

  20. K. Bergaoui, N. Reguigui, C.K. Gary et al., Appl. Radiat. Isotopes 94, 319 (2014)

    Article  Google Scholar 

  21. P.V. Raja, N.V.L.N. Murty, IEEE Trans. Nucl. Sci. 60, 558 (2018)

    Article  ADS  Google Scholar 

  22. Y. Cai, H. Hu, S. Lu, Q. Jia, App. Radiat. Isot. 135, 147 (2018)

    Article  Google Scholar 

  23. D.W. Heikkinen, in The Second International Conference on Fusion Reactor Materials, Chicago, IL, USA 1986 (Elsevier, 1986)

  24. R. Booth, J.C. Davis, C.L. Hanson et al., Nucl. Instrum. Methods 145, 25 (1977)

    Article  ADS  Google Scholar 

  25. G. Voronin, in Proceedings of the EPAC94, London, UK 1994, edited by V.P. Suller (World Scientific, Singapore, 1994)

  26. Vit.D. Koval'chuk, A.V. Krasilʼnikov, J. Exp. Theor. Phys. 77, 169 (1993)

    ADS  Google Scholar 

  27. M. Ohta, K. Takakura, K. Ochiai et al., Fusion Eng. Des. 89, 2164 (2014)

    Article  Google Scholar 

  28. Sub Working Group of Fusion Reactor Physics Subcommittee, Collection of experimental data for fusion neutronics benchmark JAERI-M 94-014, Tokyo, Japan 1994 (Japan Atomic Energy Research Institute, Japan, 1994)

  29. M.R. Cleland, B.P. Offermann, Nucl. Instrum. Methods 145, 41 (1977)

    Article  ADS  Google Scholar 

  30. J.B. Hourst, M. Roche, J. Morin, Nucl. Instrum. Methods 145, 19 (1977)

    Article  ADS  Google Scholar 

  31. T.L. Su, B.H. Su, B.T. Yang et al., Nucl. Instrum. Methods Phys. Res. A 287, 452 (1990)

    Article  ADS  Google Scholar 

  32. K. B. Yuri, Nucl. Instrum. Methods Phys. Res. A 539, 455 (2005)

    Article  Google Scholar 

  33. X.L. Lu, J.R. Wang, Y. Zhang et al., Nucl. Instrum. Methods Phys. Res. A 811, 76 (2016)

    Article  ADS  Google Scholar 

  34. A. Goncharov, Rev. Sci. Instrum. 84, 021101 (2013)

    Article  ADS  Google Scholar 

  35. Q. Wu, L.T. Sun, B.Q. Cui et al., Nucl. Instrum. Methods Phys. Res. A 830, 214 (2016)

    Article  ADS  Google Scholar 

  36. Z.E. Yao, S.W. Chen, T.L. Su et al., Nucl. Tech. 21, 787 (2004)

    Google Scholar 

  37. L. Horst, P. Arno, Nucl. Data Tables 11, 569 (1973)

    Article  Google Scholar 

  38. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Wei.

Additional information

Communicated by T. Motobayashi

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: All data generated during this study are contained in this published article.]

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Z., Han, C., Peng, S.H. et al. Physical design and evaluation of a high-intensity accelerator-based D-D/D-T fusion neutron source. Eur. Phys. J. A 55, 162 (2019). https://doi.org/10.1140/epja/i2019-12848-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12848-5

Navigation