Skip to main content

Measurement of the 235U(n, f) cross section relative to the 6Li(n, t) and 10B(n,\( \alpha\)) standards from thermal to 170 keV neutron energy range at n_TOF


The 235U(n, f ) cross section was measured at n_TOF relative to 6Li(n, t) and 10B(n,\( \alpha\)) , with high resolution ( \( L=183.49(2)\) m) and in a wide energy range (25meV-170keV) with 1.5% systematic uncertainty, making use of a stack of six samples and six silicon detectors placed in the neutron beam. This allowed us to make a direct comparison of the yields of the 235U(n, f ) and of the two reference reactions under the same experimental conditions, and taking into account the forward/backward emission asymmetry. A hint of an anomaly in the 10-30keV neutron energy range had been previously observed in other experiments, indicating a cross section systematically lower by several percent relative to major evaluations. The present results indicate that the cross section in the 9-18keV neutron energy range is indeed overestimated by almost 5% in the recently released evaluated data files ENDF/B-VIII.0 and JEFF3.3, as a consequence of a 7% overestimate in a single GMA node in the IAEA reference file. Furthermore, these new high-resolution data confirm the existence of resonance-like structures in the keV neutron energy region. The results here reported may lead to a reduction of the uncertainty in the 1-100keV neutron energy region. Finally, from the present data, a value of \( 249.7\pm 1.4(\mathrm{stat}) \pm 0.94(\mathrm{syst})\) b·eV has been extracted for the cross section integral between 7.8 and 11eV, confirming the value of \( 247.5\pm 3\) b·eV recently established as a standard.


  1. M. Barbagallo et al., Eur. Phys. J. A 49, 156 (2013)

    ADS  Article  Google Scholar 

  2. S. Marrone et al., Nucl. Instrum. Methods A 517, 389 (2004)

    ADS  Article  Google Scholar 

  3. S. Andriamonje et al., Nucl. Instrum. Methods A 481, 120 (2002)

    ADS  Article  Google Scholar 

  4. D.B. Gayther, Metrologia 27, 221 (1990)

    ADS  Article  Google Scholar 

  5. D. Tarrío et al., Nucl. Instrum. Methods A 743, 79 (2014)

    ADS  Article  Google Scholar 

  6. A. Ferrari, Technical Report CERN-2005-010, INFN/TC 05/11, SLAC-R-773 (2005)

  7. A.D. Carlson et al., Nucl. Data Sheets 110, 3215 (2009)

    ADS  Article  Google Scholar 

  8. A.D. Carlson et al., Nucl. Data Sheets 148, 143 (2018)

    ADS  Article  Google Scholar 

  9. M.B. Chadwick et al., Nucl. Data Sheets 112, 2887 (2011)

    ADS  Article  Google Scholar 

  10. D.A. Brown et al., Nucl. Data Sheets 148, 1 (2018) and references therein

    ADS  Article  Google Scholar 


  12. M. Moore et al., Phys. Rev. C 18, 1328 (1978)

    ADS  Article  Google Scholar 

  13. J.R. Lemley, G.A. Keyworth, B.C. Diven, Nucl. Sci. Eng. 43, 281 (1971)

    Article  Google Scholar 

  14. R.B. Perez, G. de Saussure, E.G. Silver, R.W. Ingle, H. Weaver, Nucl. Sci. Eng. 55, 203 (1974)

    Article  Google Scholar 

  15. C. Wagemans, A.J. Deruytter, Ann. Nucl. Energy 3, 437 (1976)

    Article  Google Scholar 

  16. G. Lanzanò, E. Migneco, Nuovo Cimento A 259, 41 (1977)

    Google Scholar 

  17. T.A. Mostovaya, Proceedings of the 5th All Union Conference on Neutron Physics, Vol. 3 (1980) pp. 30--32

  18. L.W. Weston, J.H. Todd, Nucl. Sci. Eng. 88, 567 (1984)

    Article  Google Scholar 

  19. C. Lederer et al., Phys. Rev. C 83, 034608 (2011)

    ADS  Article  Google Scholar 

  20. M. Jandel et al., Phys. Rev. Lett. 109, 202506 (2012)

    ADS  Article  Google Scholar 

  21. K. Shibata et al., J. Nucl. Sci. Technol. 48, 1 (2011)

    Article  Google Scholar 

  22. S. Goriely, Eur. Phys. J. A 51, 22 (2015)

    ADS  Article  Google Scholar 

  23. C. Guerrero et al., Eur. Phys. J. A 49, 27 (2013)

    ADS  Article  Google Scholar 



  26. G. Lorusso et al., Nucl. Instrum. Methods A 532, 622 (2004)

    ADS  Article  Google Scholar 

  27. L. Cosentino et al., Nucl. Instrum. Methods A 830, 197 (2016)

    ADS  Article  Google Scholar 

  28. M. Barbagallo et al., Phys. Rev. Lett. 117, 152701 (2016)

    ADS  Article  Google Scholar 

  29. S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003)

    ADS  Article  Google Scholar 

  30. N. Soppera, M. Bossant, E. Dupont, Nucl. Data Sheets 120, 294 (2014)

    ADS  Article  Google Scholar 


  32. V. Pronyaev, private communication (2019)

  33. R. Capote et al., Nucl. Data Sheets 148, 254 (2018)

    ADS  Article  Google Scholar 

  34. M.V. Berry, P. Shukla, J. Phys. A: Math. Theor. 42, 485102 (2009)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to P. Finocchiaro.

Additional information

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by A. Obertelli

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amaducci, S., Cosentino, L., Barbagallo, M. et al. Measurement of the 235U(n, f) cross section relative to the 6Li(n, t) and 10B(n,\( \alpha\)) standards from thermal to 170 keV neutron energy range at n_TOF. Eur. Phys. J. A 55, 120 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: