Skip to main content
Log in

Merits and constraints of low-K2 experimental data for the proton radius determination

  • Special Article - New Tools and Techniques
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The question of the determination of the proton charge radius \(R_{p}\) from electron scattering data led to an unprecedented experimental effort for measurements of the electric form factor of the proton at low and very low momentum transfer in electron and muon elastic scattering. On the basis of basic properties of densities and fitting bias considerations, a procedure is developed in order to evaluate the impact of forthcoming data on \(R_{p}\). Particularly, it is shown that a 0.1% precision on these future cross section data is necessary to establish indisputably the \(R_{p}\)-value as determined from lepton scattering. An experimental method to meet this stringent constraint is further discussed in the case of the ProRad (Proton Radius) experiment at the PRAE (Platform for Research and Applications with Electrons) facility in Orsay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Bernauer, R. Pohl, Sci. Am. 310, 32 (2014)

    Article  Google Scholar 

  2. CREMA Collaboration (R. Pohl et al.), Nature 466, 213 (2010)

    Article  Google Scholar 

  3. A1 Collaboration (J.C. Bernauer et al.), Phys. Rev. Lett. 105, 242001 (2010)

    Article  Google Scholar 

  4. P.J. Mohr, B.N. Taylor, D.B. Newell, Rev. Mod. Phys. 84, 1527 (2012)

    Article  ADS  Google Scholar 

  5. CREMA Collaboration (R. Pohl et al.), Science 353, 669 (2016)

    Article  Google Scholar 

  6. A. Beyer et al., Science 358, 79 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  7. H. Fleurbaey, Doctorat Thesis, Université Pierre et Marie Curie, Paris, France, 2017

  8. P.J. Mohr, D.B. Newell, B.N. Taylor, Rev. Mod. Phys. 88, 035009 (2016)

    Article  ADS  Google Scholar 

  9. A.L. Licht, A. Pagnamenta, Phys. Rev. D 2, 1150 (1970)

    Article  ADS  Google Scholar 

  10. J.J. Kelly, Phys. Rev. C 66, 065203 (2002)

    Article  ADS  Google Scholar 

  11. G.A. Miller, Phys. Rev. Lett. 99, 112001 (2007)

    Article  ADS  Google Scholar 

  12. C. Lorcé, private communication

  13. R.J. Hill, G. Paz, Phys. Rev. D 82, 113005 (2010)

    Article  ADS  Google Scholar 

  14. E. Kraus, K.E. Mesick, A. White, R. Gilman, S. Strauch, Phys. Rev. C 90, 045206 (2014)

    Article  ADS  Google Scholar 

  15. G. Lee, J.R. Arrington, R. Hill, Phys. Rev. D 92, 013013 (2015)

    Article  ADS  Google Scholar 

  16. I. Sick, Atoms 6, 2 (2018)

    Article  ADS  Google Scholar 

  17. D.W. Higinbotham, A. Amin Kabi, V. Lin, D. Meekins, B. Norum, B. Sawatzky, Phys. Rev. C 93, 055207 (2016)

    Article  ADS  Google Scholar 

  18. K. Griffioen, C. Carlson, S. Maddox, Phys. Rev. C 93, 065207 (2016)

    Article  ADS  Google Scholar 

  19. X. Yan, D.W. Higinbotham, D. Dutta, H. Gao, A. Gasparian, M. Khandaker, N. Liyanage, E. Pasyuk, C. Peng, W. Xiong, Phys. Rev. C 98, 025204 (2018)

    Article  ADS  Google Scholar 

  20. T.B. Hayward, K.A. Griffioen, arXiv:1804.09150 (2018)

  21. S. Zhou, P. Giuliani, J. Piekarewicz, A. Bhattacharya, D. Pati, Phys. Rev. C 99, 055202 (2019)

    Article  ADS  Google Scholar 

  22. R. Delorme, D. Marchand, C. Vallerand, Nucl. Phys. News 29, 32 (2019)

    Article  Google Scholar 

  23. S. Barsuk, in IPAC2017 Proceedings, (JaCoW, 2017) THPVA079

  24. C.E. Carlson, Prog. Part. Nucl. Phys. 82, 59 (2015)

    Article  ADS  Google Scholar 

  25. G.A. Miller, Phys. Rev. C 99, 035202 (2019)

    Article  ADS  Google Scholar 

  26. A1 Collaboration (J.C. Bernauer et al.), Phys. Rev. C 90, 015206 (2014)

    Article  ADS  Google Scholar 

  27. J.C. Bernauer, PhD Dissertation, Johannes Gutenberg Universität, Mainz, Germany, 2010

  28. B. Dudelzak, G. Sauvage, P. Lehmann, Nuovo Cimento 28, 18 (1963)

    Article  Google Scholar 

  29. F. Borkowski, G.G. Simon, V.H. Walther, R.D. Wendling, Nucl. Phys. B 93, 461 (1975)

    Article  ADS  Google Scholar 

  30. L.N. Hand, D.G. Miller, R. Wilson, Rev. Mod. Phys. 35, 335 (1963)

    Article  ADS  Google Scholar 

  31. D. Frerejacque, D. Benaksas, D. Drickey, Phys. Rev. 141, 1308 (1966)

    Article  ADS  Google Scholar 

  32. Yu.K. Akimov et al., Sov. Phys. JEPT 35, 651 (1972)

    ADS  Google Scholar 

  33. J.J. Murphy II, Y.M. Shin, D.M. Skopik, Phys. Rev. C 9, 2125 (1974)

    Article  ADS  Google Scholar 

  34. G.G. Simon, Ch. Schmitt, F. Borkowski, V.H. Walther, Nucl. Phys. A 333, 381 (1980)

    Article  ADS  Google Scholar 

  35. A1 Collaboration (M. Mihovilovič, Phys. Lett. B 771, 194 (2017)

    Article  Google Scholar 

  36. J.J. Kelly, Phys. Rev. C 70, 068202 (2004)

    Article  ADS  Google Scholar 

  37. D.W. Higinbotham, R.E. McClellan, arXiv:1902.08185 (2019)

  38. PRad Collaboration (A. Gasparian, D. Dutta, H. Gao, M. Khandaker), Jefferson Lab Experiment E12-11-106 (2011)

  39. M. Mihovilovič, private communication

  40. A. Denig, private communication

  41. T. Suda et al., J. Part. Acc. Soc. Jpn. 15, 52 (2018)

    Google Scholar 

  42. R. Gilman, E.J. Downie, G. Ron, S. Strauch, arXiv:1709.09753 (2017)

  43. I. Akushevich, H. Gao, A. Ilyichev, M. Meziane, Eur. Phys. J. A 51, 1 (2015)

    Article  ADS  Google Scholar 

  44. A.B. Arbuzov, T.V. Kopylova, Eur. Phys. J. C 75, 603 (2015)

    Article  ADS  Google Scholar 

  45. O. Tomalak, Few-Body Syst. 59, 87 (2018)

    Article  ADS  Google Scholar 

  46. D. Marchand, Doctorate Thesis, Université Blaise Pascal, Clermont-Ferrand, France, 1998

  47. J. Alcorn et al., Nucl. Instrum. Methods A 552, 294 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hoballah.

Additional information

Communicated by N. Kalantar-Nayestanaki

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: The data mentioned in the paper correspond to other experiments and not to an experiment that we have performed. Whenever we mention the data we reference the paper where these data are published. There are no experimental data attached with this paper. Pseudo-data used in the paper are not experimental measurements.]

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoballah, M., Cholak, S., Kunne, R. et al. Merits and constraints of low-K2 experimental data for the proton radius determination. Eur. Phys. J. A 55, 112 (2019). https://doi.org/10.1140/epja/i2019-12799-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12799-9

Navigation