Skip to main content
Log in

Tracking \( \gamma\) rays in highly segmented HPGe detectors: A review of AGATA and GRETINA

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The AGATA and GRETINA/GRETA tracking spectrometers allow for the highest sensitivity \( \gamma\) -ray spectroscopy achievable today. Central to these instruments is the task of tracking \( \gamma\) rays, the process by which the interaction points observed in a tracking array are assembled into actual \( \gamma\) rays. Furthermore, the process evaluates the confidence with which individual photons are assembled; i.e., whether the track reconstruction results in a full-energy \( \gamma\) ray or rather in an event associated with Compton scattering, absorption in dead layers or other effects requiring rejection in order to produce spectra with a good peak-to-total ratio. The physics capabilities provided by these spectrometers as well as the different methods of tracking that have been developed are reviewed. The methods used to determine the interaction points from the charge collection signals obtained from the central contact and the segments of HPGe detectors, are presented as well. The performances of the existing tracking arrays, together with possible improvements, are summarized and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.W. Beausang, J. Simpson, J. Phys. G 22, 527 (1996)

    Article  ADS  Google Scholar 

  2. P.J. Twin, in Workshop on Nuclear Structure at High Spins, Ris, Denmark, 1981, p. 135

  3. P.J. Twin, P.J. Nolan, R. Aryaeinejad, D.J.G. Love, A.H. Nelson, A. Kirwan, Nucl. Phys. A 409, 343c (1983)

    Article  ADS  Google Scholar 

  4. R.M. Diamond, Nucl. Sci. Res. Conf. Ser. 7, 259 (1984)

    Google Scholar 

  5. F.A. Beck, Nucl. Sci. Res. Conf. Ser. 7, 129 (1984)

    Google Scholar 

  6. B. Herskind, Nucl. Phys. A 447, 395c (1985)

    Article  ADS  Google Scholar 

  7. R.M. Lieder, H. Jager, A. Neskakis, T. Venkova, C. Michel, Nucl. Instrum. Methods Phys. Res. 220, 363 (1984)

    Article  ADS  Google Scholar 

  8. J.P. Martin, D.C. Radford, M. Beaulieu, P. Taras, D. Ward, H.R. Andrews, G. Ayotte, F.J. Sharp, J.C. Waddington, O. Hausser, J. Gascon, Nucl. Instrum. Methods Phys. Res. A 257, 301 (1987)

    Article  ADS  Google Scholar 

  9. J. Sharpey-Schafer, J. Simpson, Prog. Part. Nucl. Phys. 21, 293 (1988)

    Article  ADS  Google Scholar 

  10. P.J. Nolan, F.A. Beck, D.B. Fossan, Annu. Rev. Part. Sci. 45, 561 (1994)

    Article  ADS  Google Scholar 

  11. J. Eberth, J. Simpson, Prog. Part. Nucl. Phys 60, 283 (2008)

    Article  ADS  Google Scholar 

  12. M.A. Riley, J. Simpson, Nuclear $\gamma$-Spectroscopy and the $\gamma$-Spheres, https://doi.org/10.1002/9783527600434.eap710 (2014)

  13. A.M. Baxter, T.L. Khoo, M.E. Bleich, M.P. Carpenter, I. Ahmad, R.V.F. Janssens, E.F. Moore, I.G. Bearden, J.R. Beene, I.Y. Lee, Nucl. Instrum. Methods Phys. Res. A 317, 101 (1992)

    Article  ADS  Google Scholar 

  14. C. Rossi Alvarez, Nucl. Phys. News 3, 10 (1993)

    Article  Google Scholar 

  15. I.Y. Lee, M.A. Deleplanque, K. Vetter, Rep. Prog. Phys. 66, 1095 (2003)

    Article  ADS  Google Scholar 

  16. I.Y. Lee, Nucl. Phys. A 520, 641c (1990)

    Article  ADS  Google Scholar 

  17. I.Y. Lee, in Proceedings of the Workshop on Gammasphere Physics, Berkeley, CA 1--2 December 1995, edited by M.A. Delaplanque, I.Y. Lee, A.O. Macchiavelli (World Scientific, 1995) p. 50

  18. C.W. Beausang et al., Nucl. Instrum. Methods Phys. Res. A 313, 37 (1992)

    Article  ADS  Google Scholar 

  19. M.A. Riley, J. Simpson, E.S. Paul, Phys. Scr. 91, 123002 (2016)

    Article  ADS  Google Scholar 

  20. Division of Nuclear Physics, The DOE/NSF Nuclear Science Advisory Committee, U.S. Department of Energy, Office of Science, Opportunities in Nuclear Science, DOE Long Range Plan, 2002

  21. M.A. Deleplanque, I.Y. Lee, K. Vetter, G.J. Schmid, F.S. Stephens, R.M. Clark, R.M. Diamond, P. Fallon, A.O. Macchiavelli, Nucl. Instrum. Methods Phys. Res. A 430, 292 (1999)

    Article  ADS  Google Scholar 

  22. I.Y. Lee, Nucl. Instrum. Methods Phys. Res. A 422, 195 (1999)

    Article  ADS  Google Scholar 

  23. R.M. Lieder et al., Nucl. Phys. A 682, 279c (2001)

    Article  ADS  Google Scholar 

  24. R.M. Lieder et al., Acta Phys. Pol. B 32, 2395 (2001)

    ADS  Google Scholar 

  25. R.W. Todd, J.M. Nightingale, D.B. Everett, Nature 251, 132 (1974)

    Article  ADS  Google Scholar 

  26. V. Schoenfelder, A. Hirner, K. Schneider, Nucl. Instrum. Methods 107, 385 (1973)

    Article  ADS  Google Scholar 

  27. J. Simpson, R. Krücken, Nucl. Phys. News 13, 15 (2003)

    Article  Google Scholar 

  28. D. Bazzacco, Nucl. Phys. A 746, 248c (2004)

    Article  ADS  Google Scholar 

  29. J. Simpson, J. Phys. G: Nucl. Part. Phys 31, S1801 (2005)

    Article  ADS  Google Scholar 

  30. J. Simpson, J. Phys.: Conf. Ser. 41, 72 (2006)

    ADS  Google Scholar 

  31. S. Akkoyun et al., Nucl. Instrum. Methods Phys. Res. A 668, 26 (2012)

    Article  ADS  Google Scholar 

  32. I.Y. Lee, R.M. Clark, M. Cromaz, M.A. Deleplanque, M. Descovich, R.M. Diamond, P. Fallon, A.O. Macchiavelli, F.S. Stephens, D. Ward, Nucl. Phys. A 746, 255c (2004)

    Article  ADS  Google Scholar 

  33. I.Y. Lee, J. Simpson, Nucl. Phys. News 20, 23 (2010)

    Article  Google Scholar 

  34. GRETA (Gamma-Ray Energy Tracking Array) Conceptual Design Report, http://greta.lbl.gov/documents (2017)

  35. A.T. Young, Appl. Opt. 20, 533 (1981)

    Article  ADS  Google Scholar 

  36. S. Tashenov, J. Gerl, Nucl. Instrum. Methods Phys. Res. A 622, 592 (2010)

    Article  ADS  Google Scholar 

  37. G.F. Knoll, Radiation Detection and Measurement (Wiley, New York, 2010)

  38. J. Roth, J.H. Primbsch, R.P. Lin, IEEE Trans. Nucl. Sci. NS-31(1), 367 (1984)

    Article  ADS  Google Scholar 

  39. A.C. Zoglauer, First light for the next generation of Compton and pair telescopes: Development of new techniques for the data analysis of combined Compton and pair telescopes and their application to the MEGA prototype, PhD Thesis, Garching Max-Planck-Institut für Extraterrestrische Physik (2006), provided by the SAO/NASA Astrophysics Data System

  40. O. Klein, Y. Nishina, Z. Phys. 52, 853 (1929)

    Article  ADS  Google Scholar 

  41. J. Llacer, H.W. Kraner, Nucl. Instrum. Methods 98, 467 (1972)

    Article  ADS  Google Scholar 

  42. M. Schlarb, R. Gernhauser, S. Klupp, R. Krücken, Eur. Phys. J. A 47, 132 (2011)

    Article  ADS  Google Scholar 

  43. L. Mihailescu, W. Gast, R.M. Lieder, H. Brands, H. Jager, Nucl. Instrum. Methods Phys. Res. A 447, 350 (2000)

    Article  ADS  Google Scholar 

  44. B. Bruyneel, P. Reiter, Gh. Pascovici, Nucl. Instrum. Methods Phys. Res. A 569, 764 (2006)

    Article  ADS  Google Scholar 

  45. I. Abt, A. Caldwell, D. Lenz, J. Liu, X. Liu, B. Majorovits, Eur. Phys. J. C 68, 609 (2010)

    Article  ADS  Google Scholar 

  46. V.S. Prasher, M. Cromaz, E. Merchan, P. Chowdhury, H.L. Crawford, C.J. Lister, C.M. Campbell, I.Y. Lee, A.O. Macchiavelli, D.C. Radford, A. Wiens, Nucl. Instrum. Methods Phys. Res. A 846, 50 (2017)

    Article  ADS  Google Scholar 

  47. B. Bruyneel, B. Birkenbach, P. Reiter, Eur. Phys. J. A 52, 70 (2016)

    Article  ADS  Google Scholar 

  48. M. Ginsz, Characterization of Hyper-Pure, multi-segmented Germanium detectors, PhD Thesis, University of Strasbourg, France (2015)

  49. E. Eube, J. Eberth, U. Eberth, H. Eichner, V. Zobel, Nucl. Instrum. Methods 130, 73 (1975)

    Article  ADS  Google Scholar 

  50. S. Paschalis et al., Nucl. Instrum. Methods Phys. Res. A 709, 44 (2013)

    Article  ADS  Google Scholar 

  51. P. Fallon, A. Gade, I.Y. Lee, Annu. Rev. Nucl. Part. Sci. 66, 321 (2016)

    Article  ADS  Google Scholar 

  52. Th. Kröll, D. Bazzacco, Nucl. Instrum. Methods Phys. Res. A 463, 227 (2001)

    Article  ADS  Google Scholar 

  53. E. Farnea, F. Recchia, D. Bazzacco, Th. Kröll, Zs. Podolyak, B. Quintana, A. Gadea, Nucl. Instrum. Methods Phys. Res. A 621, 331 (2010)

    Article  ADS  Google Scholar 

  54. Th. Kröll et al., Eur. Phys. J. A 20, 205 (2004)

    Article  ADS  Google Scholar 

  55. Th. Kröll, D. Bazzacco, Nucl. Instrum. Methods Phys. Res. A 565, 691 (2006)

    Article  ADS  Google Scholar 

  56. A. Wiens, H. Hess, B. Birkenbach, B. Bruyneel, J. Eberth, D. Lersch, Gh. Pascovici, P. Reiter, H.G. Thomas, Nucl. Instrum. Methods Phys. Res. A 618, 223 (2010)

    Article  ADS  Google Scholar 

  57. A. Gadea et al., Nucl. Instrum. Methods Phys. Res. A 654, 88 (2011)

    Article  ADS  Google Scholar 

  58. C. Domingo-Pardo, D. Bazzacco, P. Doornenbal, E. Farnea, A. Gadea, J. Gerl, H.J. Wollersheim, Nucl. Instrum. Methods Phys. Res. A 694, 297 (2012)

    Article  ADS  Google Scholar 

  59. E. Clément et al., Nucl. Instrum. Methods Phys. Res. A 855, 1 (2017)

    Article  ADS  Google Scholar 

  60. K. Vetter et al., Nucl. Instrum. Methods Phys. Res. A 452, 105 (2000)

    Article  ADS  Google Scholar 

  61. P. Fallon, Second AGATA-GRETINA Collaboration meeting, https://indico.in2p3.fr/event/16944, GRETINA-GRETA (2018)

  62. C.Y. Wu, D. Cline, A. Hayes, R.S. Flight, A.M. Melchionna, C. Zhou, I.Y. Lee, D. Swan, R. Fox, J.T. Anderson, Nucl. Instrum. Methods Phys. Res. A 814, 6 (2016)

    Article  ADS  Google Scholar 

  63. D.G. Sarantites, W. Reviol, J.M. Elson, J.E. Kinnison, C.J. Izzo, J. Manfredi, J. Liu, H.S. Jung, J. Goerres, Nucl. Instrum. Methods Phys. Res. A 790, 42 (2015)

    Article  ADS  Google Scholar 

  64. D. Bazin, J.A. Caggiano, B.M. Sherrill, J. Yurkon, A. Zeller, Nucl. Instrum. Methods Phys. Res. B 204, 629 (2003)

    Article  ADS  Google Scholar 

  65. C.N. Davids, B.B. Back, K. Bindra, D.J. Henderson, W. Kutschera, T. Lauritsen, Y. Nagame, P. Sugathan, A.V. Ramayya, W.B. Walters, Nucl. Instrum. Methods Phys. Res. B 70, 358 (1992)

    Article  ADS  Google Scholar 

  66. R.J. Cooper, D.C. Radford, P.A. Hausladen, K. Lagergren, Nucl. Instrum. Methods Phys. Res. A 665, 25 (2011)

    Article  ADS  Google Scholar 

  67. R.J. Cooper, D.C. Radford, K. Lagergren, F.C. James, L. Darken, R. Henning, M.G. Marino, K.M. Yocum, Nucl. Instrum. Methods Phys. Res. A 629, 303 (2011)

    Article  ADS  Google Scholar 

  68. H. Crawford, Second AGATA-GRETINA Collaboration meeting, https://indico.in2p3.fr/event/16944, in-beam test of the ORNL prototype segmented inverted point contact detector (2018)

  69. A.J. Boston, Second AGATA-GRETINA Collaboration meeting, https://indico.in2p3.fr/event/16944, scanning tables summary report (2018)

  70. I. Doxas, C. Nieter, D.C. Radford, K. Lagergren, John R. Cary, Nucl. Instrum. Methods Phys. Res. A 580, 1331 (2007)

    Article  ADS  Google Scholar 

  71. D.C. Radford, First AGATA-GRETINA Collaboration meeting, https://indico.in2p3.fr/event/13409, GRETINA decomposition implementation (2016)

  72. K. Lagergren, D.C. Radford, unpublished

  73. D.C. Radford, A.J. Boston, Second AGATA-GRETINA Collaboration meeting, https://indico.in2p3.fr/event/16944, signal decomposition/PSA update, introduction (2018)

  74. M. Schlarb, R. Gernhauser, S. Klupp, R. Krücken, Eur. Phys. J. A 47, 131 (2011)

    Article  ADS  Google Scholar 

  75. J.P. Wright, L.J. Harkness-Brennan, A.J. Boston, D.S. Judson, M. Labiche, P.J. Nolan, R.D. Page, F. Pearce, D.C. Radford, J. Simpson, C. Unsworth, Nucl. Instrum. Methods Phys. Res. A 892, 84 (2018)

    Article  ADS  Google Scholar 

  76. M. Salathe et al., Nucl. Instrum. Methods Phys. Res. A 868, 19 (2017)

    Article  ADS  Google Scholar 

  77. M. Descovich et al., Nucl. Instrum. Methods Phys. Res. A 553, 512 (2005)

    Article  ADS  Google Scholar 

  78. M. Descovich, I.Y. Lee, P. Fallon, M. Cromaz, A.O. Macchiavelli, D.C. Radford, K. Vetter, R.M. Clark, M.A. Deleplanque, F.S. Stephens, D. Ward, Nucl. Instrum. Methods Phys. Res. A 553, 535 (2005)

    Article  ADS  Google Scholar 

  79. R. Venturelli, D. Bazzacco, LNL Annual Report (2004) p. 220

  80. D. Bazzacco, private communication (2017)

  81. A. Olariu, P. Désesquelles, Ch. Diarra, P. Medina, C. Parisel, C. Santos, IEEE Trans Nucl. Sci. 53, 1028 (2006)

    Article  ADS  Google Scholar 

  82. P. Désesquelles, T.M.H. Ha, K. Hauschild, A. Korichi, F. Le Blanc, A. Lopez-Martens, A. Olariu, C.M. Petrache, Eur. Phys. J. A 40, 237 (2009)

    Article  ADS  Google Scholar 

  83. F.C.L. Crespi, F. Camera, O. Wieland, G. Benzoni, S. Brambilla, B. Million, D. Montanari, Nucl. Instrum. Methods Phys. Res. A 570, 459 (2007)

    Article  ADS  Google Scholar 

  84. P. Désesquelles, Nucl. Instrum. Methods Phys. Res. A 654, 324 (2011)

    Article  ADS  Google Scholar 

  85. H.J. Li, J. Ljungvall, C. Michelagnoli, E. Clément, J. Dudouet, P. Désesquelles, A. Lopez-Martens, G. de France, Eur. Phys. J. A 54, 198 (2018)

    Article  ADS  Google Scholar 

  86. F.C.L. Crespi et al., Nucl. Instrum. Methods Phys. Res. A 604, 604 (2009)

    Article  ADS  Google Scholar 

  87. B. Bruyneel, B. Birkenbach, J. Eberth, H. Hess, Gh. Pascovici, P. Reiter, A. Wiens, D. Bazzacco, E. Farnea, C. Michelagnoli, F. Recchia, Eur. Phys. J. A 49, 61 (2013)

    Article  ADS  Google Scholar 

  88. O. Wieland, F. Camera, B. Million, A. Bracco, J. van der Marel, Nucl. Instrum. Methods Phys. Res. A 487, 441 (2002)

    Article  ADS  Google Scholar 

  89. A. Wiens, B. Birkenbach, B. Bruyneel, J. Eberth, H. Hess, Gh. Pascovici, P. Reiter, D. Bazzacco, E. Farnea, C. Michelagnoli, F. Recchia, Eur. Phys. J. A 49, 47 (2013)

    Article  ADS  Google Scholar 

  90. H. Gomez, S. Cebrian, J. Morales, J.A. Villar, J. Phys.: Conf. Ser. 203, 012134 (2010)

    Google Scholar 

  91. A.J. Boston, First AGATA-GRETINA Collaboration meeting, https://indico.in2p3.fr/event/13409, AGATA Pulse Shape Analysis Implementation (2016)

  92. F.L.C. Crespi, EGAN School lecture: Pulse shape analysis, http://ns.ph.liv.ac.uk/EGAN/programme-liv-school.html (2011)

  93. F. Recchia et al., Nucl. Instrum. Methods Phys. Res. A 604, 555 (2009)

    Article  ADS  Google Scholar 

  94. E. Calore, D. Bazzacco, F. Recchia, Nucl. Instrum. Methods Phys. Res. A 719, 1 (2013)

    Article  ADS  Google Scholar 

  95. P. Medina, C. Santos, D. Villaumé, in Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No. 04CH37510) (IEEE, 2004)

  96. A. Sanchez Lorente et al., Nucl. Instrum. Methods Phys. Res. A 573, 410 (2007)

    Article  ADS  Google Scholar 

  97. K. Szymanska et al., Nucl. Instrum. Methods Phys. Res. A 592, 486 (2008)

    Article  ADS  Google Scholar 

  98. L.J. Harkness et al., Nucl. Instrum. Methods Phys. Res. A 638, 67 (2011)

    Article  ADS  Google Scholar 

  99. A. Lopez-Martens, K. Hauschild, A. Korichi, J. Roccaz, J.-P. Tribaud, Nucl. Instrum. Methods Phys. Res. A 533, 454 (2004)

    Article  ADS  Google Scholar 

  100. G.J. Schmid, M.A. Deleplanque, I.Y. Lee, F.S. Stephens, K. Vetter, R.M. Clark, R.M. Diamond, P. Fallon, A.O. Macchiavelli, R.W. MacLeod, Nucl. Instrum. Methods Phys. Res. A 430, 69 (1999)

    Article  ADS  Google Scholar 

  101. T. Lauritsen et al., Nucl. Instrum. Methods Phys. Res. A 836, 46 (2016)

    Article  ADS  Google Scholar 

  102. AGATA Technical Proposal, https://www.agata.org/reports, edited by J. Gerl, W. Korten (2001)

  103. A. Korichi, T. Lauritsen, in preparation

  104. I. Piqueras, F.A. Beck, E. Pachoud, G. Duchê, Nucl. Instrum. Methods Phys. Res. A 516, 122 (2004)

    Article  ADS  Google Scholar 

  105. T. Fukuchi et al., Eur. Phys. J. A 24, 249 (2005)

    Article  ADS  Google Scholar 

  106. F. Camera, http://agata.pd.infn.it/documents/glp5152003/FrancoCamera.pdf, Cluster-Tracking for AGATA (2003)

  107. A. Atac, A. Kaskas, S. Akkoyun, M. Senyigit, S.O. Kara, J. Nyberg, Nucl. Instrum. Methods Phys. Res. A 607, 554 (2009)

    Article  ADS  Google Scholar 

  108. T. Lauritsen, First AGATA-GRETINA Collaboration meeting, https://indico.in2p3.fr/event/13409, the GRETINA tracking code (2016)

  109. N. Lalović, Nucl. Instrum. Methods Phys. Res. A 806, 258 (2016)

    Article  ADS  Google Scholar 

  110. M. Senyigit et al., Nucl. Instrum. Methods Phys. Res. A 735, 267 (2014)

    Article  ADS  Google Scholar 

  111. A. Lopez-Martens, First AGATA-GRETINA Collaboration meeting, https://indico.in2p3.fr/event/13409, the AGATA tracking code (2016)

  112. A. Lopez-Martens, Second AGATA-GRETINA Collaboration meeting, https://indico.in2p3.fr/event/16944, AGATA tracking code improvement (2018)

  113. J. van der Marel, B. Cederwall, Nucl. Instrum. Methods Phys. Res. A 437, 538 (1999)

    Article  ADS  Google Scholar 

  114. J. van der Marel, B. Cederwall, Nucl. Instrum. Methods Phys. Res. A 477, 391 (2002)

    Article  ADS  Google Scholar 

  115. L. Milechina, B. Cederwall, Nucl. Instrum. Methods Phys. Res. A 508, 394 (2003)

    Article  ADS  Google Scholar 

  116. P. Napiralla, C. Stahl, H. Egger, M. Reese, N. Pietralla, First AGATA-GRETINA Collaboration meeting, https://indico.in2p3.fr/event/13409, Bayes-Tracking: A new Approach for Gamma-Ray Tracking (2016)

  117. F. Didierjean, G. Duchê, Nucl. Instrum. Methods Phys. Res. A 615, 188 (2010)

    Article  ADS  Google Scholar 

  118. C. Rossi Alvarez, http://agata.pd.infn.it/documents/glp5152003/CarlosRossiAlvarez.pdf, Clustering Gammas by using Fuzzy Logic (2003)

  119. AGATA Technical Design Report, https://www.agata.org/reports, edited by J. Simpson, J. Nyberg, W. Korten (2008)

  120. L.A. Zadeh, Inf. Control 8, 338 (1965)

    Article  Google Scholar 

  121. S. Zhu, private communication (2018)

  122. D. Weisshaar, private communication (2016)

  123. M.J. Cooper, Rep. Prog. Phys. 48, 415 (1985)

    Article  ADS  Google Scholar 

  124. R.M. Kippen, http://gammaray.msfc.nasa.gov

  125. N.J. Hammond, T. Duguet, C.J. Lister, Nucl. Instrum. Methods Phys. Res. A 547, 535 (2005)

    Article  ADS  Google Scholar 

  126. S. Heil, S. Paschalis, S. Petri, Eur. Phys. J. A 54, 172 (2018)

    Article  ADS  Google Scholar 

  127. M. Topinka, Machine learning search for gamma-ray burst afterglows in optical surveys, arXiv:1511.04555 (2015)

  128. Second AGATA-GRETINA Collaboration meeting, https://indico.in2p3.fr/event/16944, Machine learning sessions (2018)

  129. A. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003)

    Article  ADS  Google Scholar 

  130. M. Labiche, First AGATA-GRETINA Collaboration meeting, https://indico.in2p3.fr/event/13409, the AGATA GEANT4 simulation package (2016)

  131. J. Ljungvall, Second AGATA-GRETINA Collaboration meeting, https://indico.in2p3.fr/event/16944, simulations status for AGATA (2018)

  132. L.A. Riley, http://gretina.lbl.gov/tools-etc, GEANT4 Simulation Packages: UCGretina

  133. H. Crawford, L.A. Riley, First AGATA-GRETINA Collaboration meeting, https://indico.in2p3.fr/event/13409, GRETINA simulations (2016)

  134. T. Lauritsen, A. Korichi, T.L. Khoo, M.P. Carpenter, R.V.F. Janssens, L.A. Riley, D. Seweryniak, S. Zhu, Phys. Scr. 92, 074002 (2017)

    Article  ADS  Google Scholar 

  135. A. Lopez-Martens, T. Lauritsen, S. Leoni, T. Dossing, T.L. Khoo, S. Siem, Prog. Part. Nucl. Phys. 89, 137 (2016)

    Article  ADS  Google Scholar 

  136. T. Lauritsen et al., Phys. Rev. C 75, 064309 (2007)

    Article  ADS  Google Scholar 

  137. J. Ljungvall, J. Nyberg, Nucl. Instrum. Methods Phys. Res. A 550, 379 (2005)

    Article  ADS  Google Scholar 

  138. A. Korichi, T. Lauritsen, A.N. Wilson, J. Dudouet, E. Clément, N. Lalović, Nucl. Instrum. Methods Phys. Res. A 872, 80 (2017)

    Article  ADS  Google Scholar 

  139. B. Bruyneel, P. Reiter, Gh. Pascovici, Nucl. Instrum. Methods Phys. Res. A 569, 774 (2006)

    Article  ADS  Google Scholar 

  140. B. Bruyneel, P. Reiter, A. Wiens, J. Eberth, H. Hess, Gh. Pascovici, N. Warr, D. Weisshaar, Nucl. Instrum. Methods Phys. Res. A 599, 196 (2009)

    Article  ADS  Google Scholar 

  141. B. Bruyneel, P. Reiter, A. Wiens, J. Eberth, H. Hess, Gh. Pascovici, N. Warr, S. Aydin, D. Bazzacco, F. Recchia, Nucl. Instrum. Methods Phys. Res. A 608, 99 (2009)

    Article  ADS  Google Scholar 

  142. A. Pullia, D. Weisshaar, F. Zocca, D. Bazzacco, IEEE Trans. Nucl. Sci. 58, 1201 (2011)

    Article  ADS  Google Scholar 

  143. D.C. Radford, http://gswg.lbl.gov/meetings/SignalDecompAndXTalk-Radford.pdf, GRETINA Signal Decomposition and Cross-talk (2012)

  144. M. Cromaz, J. Phys.: Conf. Ser. 606, 012016 (2015)

    Google Scholar 

  145. M. Eschenauer, R. Wirowski, D. Marcus, P. von Brentano, Nucl. Instrum. Methods Phys. Res. A 340, 364 (1994)

    Article  ADS  Google Scholar 

  146. W.C.G. Ho, S.E. Boggs, R.P. Lin, S. Slassi-Sennou, N.W. Madden, R.H. Pehl, E.L. Hull, Nucl. Instrum. Methods Phys. Res. A 412, 507 (1998)

    Article  ADS  Google Scholar 

  147. M. Descovich et al., Nucl. Instrum. Methods Phys. Res. B 241, 931 (2005)

    Article  ADS  Google Scholar 

  148. M. Descovich et al., Nucl. Instrum. Methods Phys. Res. A 545, 199 (2005)

    Article  ADS  Google Scholar 

  149. R. Hetzenegger, Second AGATA-GRETINA Collaboration meeting, https://indico.in2p3.fr/event/16944, numerical correction of neutron damages in AGATA HPGe detectors (2018)

  150. T.J. Ross, C.W. Beausang, I.Y. Lee, A.O. Macchiavelli, S. Gros, M. Cromaz, R.M. Clark, P. Fallon, H. Jeppensen, J.M. Allmond, Nucl. Instrum. Methods Phys. Res. A 606, 533 (2009)

    Article  ADS  Google Scholar 

  151. T.K. Alexander, J.S. Forster, in Advances in Nuclear Physics, edited by M. Baranger, E. Vogt, Vol. 10 (Plenum, 1968)

  152. E. Farnea, AIP Conf. Proc. 1491, 42 (2012)

    Article  ADS  Google Scholar 

  153. P.-A. Söderström et al., Nucl. Instrum. Methods Phys. Res. A 638, 96 (2011)

    Article  ADS  Google Scholar 

  154. D. Weisshaar et al., Nucl. Instrum. Methods Phys. Res. A 847, 187 (2017)

    Article  ADS  Google Scholar 

  155. M. Alcorta, I. Wiedenhoever, R.V.F. Janssens, http://www.phy.anl.gov/gammasphere/doc/absorbers/index.html

  156. T. Yamazaki, Nucl. Data A 3, 1 (1967)

    Article  Google Scholar 

  157. D.D. Watson, G.I. Harris, Nucl. Data A 3, 25 (1967)

    Article  Google Scholar 

  158. J. Rikovska, N.J. Stone, At. Data Nucl. Data Tables 37, 53 (1987)

    Article  ADS  Google Scholar 

  159. M.J. Yates, in Alpha-, Beta- and Gamma-ray Spectroscopy, edited by Kai Siegbahn, Vol. 2 (North Holland, 1965) p. 1691

  160. T. Lauritsen, A. Korichi, Second AGATA-GRETINA Collaboration meeting, https://indico.in2p3.fr/event/16944, angular distributions and angular correlations in the GRETINA array (2018)

  161. S. Bottoni, First AGATA-GRETINA Collaboration meeting, https://indico.in2p3.fr/event/13409, angular distributions of tracked gamma-rays produced in direct reactions between heavy ions (2016)

  162. P.G. Bizzeti et al., Eur. Phys. J. A 51, 49 (2015)

    Article  Google Scholar 

  163. M.D. Jones et al., Phys. Rev. C 97, 024327 (2018)

    Article  ADS  Google Scholar 

  164. B. Alikhani, A. Givechev, A. Heinz, P.R. John, J. Leske, M. Lettmann, O. Moller, N. Pietralla, C. Roder, Nucl. Instrum. Methods Phys. Res. A 675, 144 (2012)

    Article  ADS  Google Scholar 

  165. C. Stahl, J. Leske, M. Lettmann, N. Pietralla, Comput. Phys. Commun. 214, 174 (2017)

    Article  ADS  Google Scholar 

  166. P. Nolan, J. Sharpey-Schafer, Rep. Prog. Phys. 42, 1 (1979)

    Article  ADS  Google Scholar 

  167. H. Gutbord, Nucl. Phys. A 752, 457c (2005)

    Article  ADS  Google Scholar 

  168. E.S. Reich, Nature 477, 15 (2011)

    Article  ADS  Google Scholar 

  169. A. Andrighetto et al., Nucl. Phys. A 834, 754c (2010)

    Article  ADS  Google Scholar 

  170. S. Gales, Nucl. Phys. A 834, 717c (2010)

    Article  ADS  Google Scholar 

  171. I.Y. Lee, Nucl. Phys. A 834, 743c (2010)

    Article  ADS  Google Scholar 

  172. I.Y. Lee, AIP Conf. Proc. 1139, 23 (2009)

    Article  ADS  Google Scholar 

  173. E. Farnea, D. Bazzacco, Nucl. Phys. News 22, 27 (2012)

    Article  Google Scholar 

  174. P. Walker, Nature 10, 338 (2014)

    Google Scholar 

  175. S. Leoni, Acta Phys. Pol. B 45, 147 (2014)

    Article  ADS  Google Scholar 

  176. N. Pietralla et al., EPJ Web of Conferences 66, 02083 (2014)

    Article  Google Scholar 

  177. D. Mengoni, EPJ Web of Conferences 66, 11012 (2014)

    Article  Google Scholar 

  178. E. Clément, A. Gadea, J. Gerl, Nucl. Phys. News 28, 16 (2018)

    Article  Google Scholar 

  179. AGATA web site, https://www.agata.org

  180. GRETA web site, http://greta.lbl.gov

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Korichi.

Additional information

Communicated by N. Alamanos

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korichi, A., Lauritsen, T. Tracking \( \gamma\) rays in highly segmented HPGe detectors: A review of AGATA and GRETINA. Eur. Phys. J. A 55, 121 (2019). https://doi.org/10.1140/epja/i2019-12787-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12787-1

Navigation