Advertisement

RMF models with \(\sigma\)-scaled hadron masses and couplings for the description of heavy-ion collisions below 2 A GeV

  • Konstantin A. MaslovEmail author
  • Dmitry N. Voskresensky
Regular Article - Theoretical Physics
  • 20 Downloads

Abstract.

Within the relativistic mean-field framework with hadron masses and coupling constants dependent on the mean scalar field we study properties of nuclear matter at finite temperatures, baryon densities and isospin asymmetries relevant for heavy-ion collisions at laboratory energies below \( 2 A\) GeV. Previously constructed (KVORcut-based and MKVOR-based) models for the description of the cold hadron matter, which differ mainly by the density dependence of the nucleon effective mass and symmetry energy, are extended for finite temperatures. The baryon equation of state, which includes nucleons and \(\Delta\) resonances is supplemented by the contribution of the pion gas described either by the vacuum dispersion relation or with taking into account the s-wave pion-baryon interaction. Distribution of the charge between components is found. Thermodynamical characteristics on the T-n plane are considered. The energy-density and entropy-density isotherms are constructed and a dynamical trajectory of the hadron system formed in heavy-ion collisions is described. The effects of taking into account the \( \Delta\) isobars and the s-wave pion-nucleon interaction on pion differential cross sections, pion to proton and \( \pi^{-}/\pi^{+}\) ratios are studied. The liquid-gas first-order phase transition is studied within the same models in isospin-symmetric and asymmetric systems. We demonstrate that our models yield thermodynamic characteristics of the phase transition compatible with available experimental results. In addition, we discuss the scaled variance of baryon and electric charge in the phase transition region. Effect of the non-zero surface tension on spatial redistribution of the electric charge is considered for a possible application to heavy-ion collisions at low energies.

References

  1. 1.
    T. Klähn et al., Phys. Rev. C 74, 035802 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    S. Typel, H.H. Wolter, Nucl. Phys. A 656, 331 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    S. Typel, Phys. Rev. C 71, 064301 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    M.D. Voskresenskaya, S. Typel, Nucl. Phys. A 887, 42 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    M. Oertel, M. Hempel, T. Klähn, S. Typel, Rev. Mod. Phys. 89, 015007 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    E.E. Kolomeitsev, D.N. Voskresensky, Nucl. Phys. A 759, 373 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    A.S. Khvorostukhin, V.D. Toneev, D.N. Voskresensky, Nucl. Phys. A 791, 180 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    A.S. Khvorostukhin, V.D. Toneev, D.N. Voskresensky, Nucl. Phys. A 813, 313 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    A.S. Khvorostukhin, V.D. Toneev, D.N. Voskresensky, Nucl. Phys. A 845, 106 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    P. Demorest, T. Pennucci, S. Ransom, M. Roberts, J. Hessels, Nature 467, 1081 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    E. Fonseca et al., Astrophys. J. 832, 167 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    J. Antoniadis, P.C.C. Freire, N. Wex, T.M. Tauris, R.S. Lynch, M.H. van Kerkwijk, M. Kramer, C. Bassa, Science 340, 6131 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    P. Danielewicz, R. Lacey, W.G. Lynch, Science 298, 1592 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    K.A. Maslov, E.E. Kolomeitsev, D.N. Voskresensky, Phys. Lett. B 748, 369 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    K.A. Maslov, E.E. Kolomeitsev, D.N. Voskresensky, Nucl. Phys. A 950, 64 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    E.E. Kolomeitsev, K.A. Maslov, D.N. Voskresensky, Nucl. Phys. A 961, 106 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    E.E. Kolomeitsev, K.A. Maslov, D.N. Voskresensky, Nucl. Phys. A 970, 291 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    P.J. Siemens, J.O. Rasmussen, Phys. Rev. Lett. 42, 880 (1979)ADSCrossRefGoogle Scholar
  19. 19.
    B. Friedman, V.R. Pandharipande, Q.N. Usmani, Nucl. Phys. A 372, 483 (1981)ADSCrossRefGoogle Scholar
  20. 20.
    S. Das Gupta, A.Z. Mekjian, Phys. Rep. 72, 131 (1981)ADSCrossRefGoogle Scholar
  21. 21.
    I.N. Mishustin, L.M. Satarov, Yad. Fiz. 37, 894 (1983)Google Scholar
  22. 22.
    R. Stock, Phys. Rep. 135, 259 (1986)ADSCrossRefGoogle Scholar
  23. 23.
    H. Stöcker, W. Greiner, Phys. Rep. 137, 277 (1986)ADSCrossRefGoogle Scholar
  24. 24.
    G.F. Bertsch, S. Das Gupta, Phys. Rep. 160, 189 (1988)ADSCrossRefGoogle Scholar
  25. 25.
    W. Cassing, V. Metag, U. Mosel, K. Niita, Phys. Rep. 188, 363 (1990)ADSCrossRefGoogle Scholar
  26. 26.
    Y.B. Ivanov, V.N. Russkikh, M. Schoenhofen, M. Cubero, B.L. Friman, W. Nörenberg, Z. Phys. A 340, 385 (1991)ADSCrossRefGoogle Scholar
  27. 27.
    I.N. Mishustin, V.N. Russkikh, L.M. Satarov, Sov. J. Nucl. Phys. 54, 260 (1991) (Yad. Fiz. 54Google Scholar
  28. 28.
    U. Katscher, D.H. Rischke, J.A. Maruhn, W. Greiner, I.N. Mishustin, L.M. Satarov, Z. Phys. A 346, 209 (1993)ADSCrossRefGoogle Scholar
  29. 29.
    M. Bleicher et al., J. Phys. G 25, 1859 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    V. Baran, M. Colonna, V. Greco, M. Di Toro, Phys. Rep. 410, 335 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    I.C. Arsene et al., Phys. Rev. C 75, 034902 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    H. Petersen, J. Steinheimer, G. Burau, M. Bleicher, H. Stöcker, Phys. Rev. C 78, 044901 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    O. Buss, T. Gaitanos, K. Gallmeister, H. van Hees, M. Kaskulov, O. Lalakulich, A.B. Larionov, T. Leitner, J. Weil, U. Mosel, Phys. Rep. 512, 1 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    A. Le Fèvre, Y. Leifels, W. Reisdorf, J. Aichelin, C. Hartnack, Nucl. Phys. A 945, 112 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    D.N. Voskresensky, A.V. Senatorov, Sov. J. Nucl. Phys. 48, 71 (1988) (Yad. Fiz. 48Google Scholar
  36. 36.
    J.D. Walecka, Ann. Phys. 83, 491 (1974)ADSCrossRefGoogle Scholar
  37. 37.
    D.N. Voskresensky, Sov. J. Nucl. Phys. 50, 983 (1989) (Yad. Fiz. 50Google Scholar
  38. 38.
    A.B. Migdal, E.E. Saperstein, M.A. Troitsky, D.N. Voskresensky, Phys. Rep. 192, 179 (1990)ADSCrossRefGoogle Scholar
  39. 39.
    D.N. Voskresensky, Nucl. Phys. A 555, 293 (1993)ADSCrossRefGoogle Scholar
  40. 40.
    M. Cubero, M. Schonhofen, H. Feldmeier, W. Norenberg, Phys. Lett. B 201, 11 (1988)ADSCrossRefGoogle Scholar
  41. 41.
    A.V. Senatorov, D.N. Voskresensky, Phys. Lett. B 219, 31 (1989)ADSCrossRefGoogle Scholar
  42. 42.
    Y.B. Ivanov, D. Blaschke, Eur. Phys. J. A 52, 237 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    G. Röpke, L. Münchow, H. Schulz, Phys. Lett. B 110, 21 (1982)ADSCrossRefGoogle Scholar
  44. 44.
    H. Schulz, L. Münchow, G. Röpke, M. Schmidt, Phys. Lett. B 119, 12 (1982)ADSCrossRefGoogle Scholar
  45. 45.
    H. Schulz, D.N. Voskresensky, J. Bondorf, Phys. Lett. B 133, 141 (1983)ADSCrossRefGoogle Scholar
  46. 46.
    G. Bertsch, P. Siemens, Phys. Lett. B 126, 9 (1983)ADSCrossRefGoogle Scholar
  47. 47.
    A.D. Panagiotou, M.W. Curtin, H. Toki, D.K. Scott, P.J. Siemens, Phys. Rev. Lett. 52, 496 (1984)ADSCrossRefGoogle Scholar
  48. 48.
    J.P. Bondorf, R. Donangelo, I.N. Mishustin, C.J. Pethick, H. Schulz, K. Sneppen, Nucl. Phys. A 443, 321 (1985)ADSCrossRefGoogle Scholar
  49. 49.
    J.P. Bondorf, A.S. Botvina, A.S. Ilinov, I.N. Mishustin, K. Sneppen, Phys. Rep. 257, 133 (1995)ADSCrossRefGoogle Scholar
  50. 50.
    D.H.E. Gross, Phys. Rep. 279, 119 (1997)ADSCrossRefGoogle Scholar
  51. 51.
    P. Chomaz, M. Colonna, J. Randrup, Phys. Rep. 389, 263 (2004)ADSCrossRefGoogle Scholar
  52. 52.
    M.E. Fisher, A.N. Backer, Phys. Rev. B 26, 2007 (1982)ADSGoogle Scholar
  53. 53.
    R. Botet, M. Ploszajczak, Universal fluctuations: The phenomenology of hadronic matter (Word Scientific, 2002)Google Scholar
  54. 54.
    K.A. Bugaev, M.I. Gorenstein, I.N. Mishustin, W. Greiner, Phys. Rev. C 62, 044320 (2000)ADSCrossRefGoogle Scholar
  55. 55.
    P.T. Reuter, K.A. Bugaev, Phys. Lett. B 517, 233 (2001)ADSCrossRefGoogle Scholar
  56. 56.
    S. Mallik, G. Chaudhuri, F. Gulminelli, Phys. Rev. C 97, 024606 (2018)ADSCrossRefGoogle Scholar
  57. 57.
    H. Muller, B.D. Serot, Phys. Rev. C 52, 2072 (1995)ADSCrossRefGoogle Scholar
  58. 58.
    B.A. Li, C.M. Ko, W. Bauer, Int. J. Mod. Phys. E 7, 147 (1998)ADSCrossRefGoogle Scholar
  59. 59.
    C. Ducoin, P. Chomaz, F. Gulminelli, Nucl. Phys. A 771, 68 (2006)ADSCrossRefGoogle Scholar
  60. 60.
    A.R. Raduta, F. Gulminelli, Phys. Rev. C 75, 044605 (2007)ADSCrossRefGoogle Scholar
  61. 61.
    N. Alam, H. Pais, C. Providencia, B.K. Agrawal, Phys. Rev. C 95, 055808 (2017)ADSCrossRefGoogle Scholar
  62. 62.
    M. D’Agostino et al., Phys. Lett. B 473, 219 (2000)ADSCrossRefGoogle Scholar
  63. 63.
    M. Schmidt, R. Kusche, T. Hippler, J. Donges, W. Kronmuller, B. von Issendorff, H. Haberland, Phys. Rev. Lett. 86, 1191 (2001)ADSCrossRefGoogle Scholar
  64. 64.
    C.B. Das, S. Das Gupta, W.G. Lynch, A.Z. Mekjian, M.B. Tsang, Phys. Rep. 406, 1 (2005)ADSCrossRefGoogle Scholar
  65. 65.
    V.V. Skokov, D.N. Voskresensky, JETP Lett. 90, 223 (2009)ADSCrossRefGoogle Scholar
  66. 66.
    V.V. Skokov, D.N. Voskresensky, Nucl. Phys. A 828, 401 (2009)ADSCrossRefGoogle Scholar
  67. 67.
    V.V. Skokov, D.N. Voskresensky, Nucl. Phys. A 847, 253 (2010)ADSCrossRefGoogle Scholar
  68. 68.
    J. Randrup, Phys. Rev. C 82, 034902 (2010)ADSCrossRefGoogle Scholar
  69. 69.
    J. Steinheimer, J. Randrup, Phys. Rev. C 87, 054903 (2013)ADSCrossRefGoogle Scholar
  70. 70.
    INDRA Collaboration (B. Borderie et al.), Phys. Lett. B 782, 291 (2018)ADSCrossRefGoogle Scholar
  71. 71.
    M. Colonna, P. Chomaz, S. Ayik, Phys. Rev. Lett. 88, 122701 (2002)ADSCrossRefGoogle Scholar
  72. 72.
    FOPI Collaboration (W. Reisdorf et al.), Nucl. Phys. A 848, 366 (2010)ADSCrossRefGoogle Scholar
  73. 73.
    V.V. Sagun, A.I. Ivanytskyi, K.A. Bugaev, I.N. Mishustin, Nucl. Phys. A 924, 24 (2014)ADSCrossRefGoogle Scholar
  74. 74.
    K.A. Maslov, E.E. Kolomeitsev, D.N. Voskresensky, Phys. Rev. C 92, 052801 (2015)ADSCrossRefGoogle Scholar
  75. 75.
    A.B. Migdal, Rev. Mod. Phys. 50, 107 (1978)ADSCrossRefGoogle Scholar
  76. 76.
    G. Baym, D. Campbell, R.F. Dashen, J. Manassah, Phys. Lett. B 58, 304 (1975)ADSCrossRefGoogle Scholar
  77. 77.
    E. Friedman, A. Gal, The pion-nucleon $\sigma$ term from pionic atoms, arXiv:1901.03130 [nucl-th]Google Scholar
  78. 78.
    E.E. Kolomeitsev, N. Kaiser, W. Weise, Phys. Rev. Lett. 90, 092501 (2003)ADSCrossRefGoogle Scholar
  79. 79.
    Y.L. Ma, M. Rho, A pseudo-conformal structure in dense baryonic matter, arXiv:1810.06062 [nucl-th]Google Scholar
  80. 80.
    D.N. Voskresensky, Nucl. Phys. A 849, 120 (2011)ADSCrossRefGoogle Scholar
  81. 81.
    Y.B. Ivanov, V.N. Russkikh, V.D. Toneev, Phys. Rev. C 73, 044904 (2006)ADSCrossRefGoogle Scholar
  82. 82.
    S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998)ADSCrossRefGoogle Scholar
  83. 83.
    J. Gosset, J.I. Kapusta, G.D. Westfall, Phys. Rev. C 18, 844 (1978)ADSCrossRefGoogle Scholar
  84. 84.
    S. Nagamiya, M.C. Lemaire, E. Moller, S. Schnetzer, G. Shapiro, H. Steiner, I. Tanihata, Phys. Rev. C 24, 971 (1981)ADSCrossRefGoogle Scholar
  85. 85.
    H.W. Barz, L.P. Csernai, W. Greiner, Phys. Rev. C 26, 740 (1982)ADSCrossRefGoogle Scholar
  86. 86.
    J. Randrup, J. Cleymans, Phys. Rev. C 74, 047901 (2006)ADSCrossRefGoogle Scholar
  87. 87.
    M. Mishra, C.P. Singh, Phys. Lett. B 651, 119 (2007)ADSCrossRefGoogle Scholar
  88. 88.
    STAR Collaboration (L. Adamczyk et al.), Phys. Rev. C 96, 044904 (2017)ADSCrossRefGoogle Scholar
  89. 89.
    D.N. Voskresensky, A.V. Senatorov, Sov. J. Nucl. Phys. 53, 935 (1991) (Yad. Fiz. 53Google Scholar
  90. 90.
    D.N. Voskresensky, E.E. Kolomeitsev, Phys. At. Nucl. 56, 252 (1993) (Yad. Fiz. 56N2Google Scholar
  91. 91.
    D.N. Voskresensky, E.E. Kolomeitsev, Phys. At. Nucl. 58, 126 (1995) (Yad. Fiz. 58Google Scholar
  92. 92.
    J. Miller et al., Phys. Rev. Lett. 58, 2408 (1987)ADSCrossRefGoogle Scholar
  93. 93.
    S. Hayashi et al., Phys. Rev. C 38, 1229 (1988)ADSCrossRefGoogle Scholar
  94. 94.
    FOPI Collaboration (D. Pelte et al.), Z. Phys. A 357, 215 (1997)CrossRefGoogle Scholar
  95. 95.
    A. Sandoval et al., Phys. Rev. Lett. 45, 874 (1980)ADSCrossRefGoogle Scholar
  96. 96.
    J.W. Harris et al., Phys. Rev. Lett. 58, 463 (1987)ADSCrossRefGoogle Scholar
  97. 97.
    FOPI Collaboration (W. Reisdorf et al.), Nucl. Phys. A 781, 459 (2007)ADSCrossRefGoogle Scholar
  98. 98.
    FOPI Collaboration (B. Hong et al.), Phys. Rev. C 71, 034902 (2005)CrossRefGoogle Scholar
  99. 99.
    M. Gyulassy, S.K. Kauffmann, Nucl. Phys. A 362, 503 (1981)ADSCrossRefGoogle Scholar
  100. 100.
    B.A. Li, Phys. Lett. B 346, 5 (1995)ADSCrossRefGoogle Scholar
  101. 101.
    H.W. Barz, J.P. Bondorf, J.J. Gaardhoje, H. Heiselberg, Phys. Rev. C 57, 2536 (1998)ADSCrossRefGoogle Scholar
  102. 102.
    J. Xu, L.W. Chen, C.M. Ko, B.A. Li, Y.G. Ma, Phys. Rev. C 87, 067601 (2013)ADSCrossRefGoogle Scholar
  103. 103.
    J. Hong, P. Danielewicz, Phys. Rev. C 90, 024605 (2014)ADSCrossRefGoogle Scholar
  104. 104.
    M.D. Cozma, Phys. Lett. B 753, 166 (2016)ADSCrossRefGoogle Scholar
  105. 105.
    Z. Zhang, C.M. Ko, Phys. Rev. C 95, 064604 (2017)ADSCrossRefGoogle Scholar
  106. 106.
    S$\pi$RIT Collaboration (M.B. Tsang et al.), Phys. Rev. C 95, 044614 (2017)CrossRefGoogle Scholar
  107. 107.
    G.F. Wei, G.C. Yong, L. Ou, Q.J. Zhi, Z.W. Long, X.H. Zhou, Phys. Rev. C 98, 024618 (2018)ADSCrossRefGoogle Scholar
  108. 108.
    G.F. Wei, G.Q. He, X.W. Cao, Y.X. Lu, Adv. High Energy Phys. 2016, 9317873 (2016)CrossRefGoogle Scholar
  109. 109.
    M. Dutra, O. Loureno, D.P. Menezes, Consistent relativistic mean-field models: Critical parameters values, arXiv:1805.02735 [nucl-th]Google Scholar
  110. 110.
    A. Carbone, A. Polls, A. Rios, Phys. Rev. C 98, 025804 (2018)ADSCrossRefGoogle Scholar
  111. 111.
    J.B. Elliott, P.T. Lake, L.G. Moretto, L. Phair, Phys. Rev. C 87, 054622 (2013)ADSCrossRefGoogle Scholar
  112. 112.
    C. Sasaki, B. Friman, K. Redlich, Phys. Rev. Lett. 99, 232301 (2007)ADSCrossRefGoogle Scholar
  113. 113.
    C. Sasaki, B. Friman, K. Redlich, Phys. Rev. D 77, 034024 (2008)ADSCrossRefGoogle Scholar
  114. 114.
    C. Pethick, D.G. Ravenhall, Nucl. Phys. A 471, 19c (1987)ADSCrossRefGoogle Scholar
  115. 115.
    J.A. Lopez, G. Lübeck, Phys. Lett. B 219, 215 (1989)ADSCrossRefGoogle Scholar
  116. 116.
    M.A. Stephanov, K. Rajagopal, E.V. Shuryak, Phys. Rev. D 60, 114028 (1999)ADSCrossRefGoogle Scholar
  117. 117.
    L.D. Landau, E.M. Lifshiz, Statistical Physics, Part I (Pergamon Press, Oxford, 1980) Sect. XIIGoogle Scholar
  118. 118.
    G. Röpke, D.N. Voskresensky, I.A. Kryukov, D. Blaschke, Nucl. Phys. A 970, 224 (2018)ADSCrossRefGoogle Scholar
  119. 119.
    N.K. Glendenning, Phys. Rep. 342, 393 (2001)ADSCrossRefGoogle Scholar
  120. 120.
    R. Poberezhnyuk, V. Vovchenko, M.I. Gorenstein, H. Stöcker, Non-congruent phase transitions in strongly interacting matter within the quantum van der Waals model, arXiv:1810.07640 [hep-ph]Google Scholar
  121. 121.
    I. Iosilevskiy, Acta Phys. Pol. Supp. 3, 589 (2010)Google Scholar
  122. 122.
    M. Hempel, V. Dexheimer, S. Schramm, I. Iosilevskiy, Phys. Rev. C 88, 014906 (2013)ADSCrossRefGoogle Scholar
  123. 123.
    A. Burrows, R.F. Sawyer, Phys. Rev. C 58, 554 (1998)ADSCrossRefGoogle Scholar
  124. 124.
    G. Baym, H.A. Bethe, C. Pethick, Nucl. Phys. A 175, 225 (1971)ADSCrossRefGoogle Scholar
  125. 125.
    D.N. Voskresensky, M. Yasuhira, T. Tatsumi, Nucl. Phys. A 723, 291 (2003)ADSCrossRefGoogle Scholar
  126. 126.
    C.J. Pethick, D.G. Ravenhall, J.M. Lattimer, Phys. Lett. B 128, 137 (1983)ADSCrossRefGoogle Scholar
  127. 127.
    H. Heiselberg, C.J. Pethick, E.F. Staubo, Phys. Rev. Lett. 70, 1355 (1993)ADSCrossRefGoogle Scholar
  128. 128.
    T. Norsen, S. Reddy, Phys. Rev. C 63, 065804 (2001)ADSCrossRefGoogle Scholar
  129. 129.
    D.G. Ravenhall, C.J. Pethick, J.M. Lattimer, Nucl. Phys. A 407, 571 (1983)ADSCrossRefGoogle Scholar
  130. 130.
    G. Grams, A.M. Santos, P.K. Panda, C. Providência, D.P. Menezes, Phys. Rev. C 95, 055807 (2017)ADSCrossRefGoogle Scholar
  131. 131.
    T. Maruyama, T. Tatsumi, D.N. Voskresensky, T. Tanigawa, S. Chiba, Phys. Rev. C 72, 015802 (2005)ADSCrossRefGoogle Scholar
  132. 132.
    T. Maruyama, T. Tatsumi, D.N. Voskresensky, T. Tanigawa, T. Endo, S. Chiba, Phys. Rev. C 73, 035802 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Konstantin A. Maslov
    • 1
    • 2
    Email author
  • Dmitry N. Voskresensky
    • 1
    • 2
  1. 1.National Research Nuclear University (MEPhI)MoscowRussia
  2. 2.Joint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations