Fine structure effect among heavy-ion induced fission fragments at near and above barrier energies


The fission decay analysis of 201Bi*, 206Po*, 212Rn*, 216Ra*, 227Pa* and 228U* nuclei produced in 19F-induced reactions at near and above barrier energies is carried out within the framework of dynamical cluster-decay model (DCM) based on quantum mechanical fragmentation theory (QMFT). The interplay between two modes of fission, i.e. symmetric (SF) and asymmetric (aSF), in the fission fragment mass distributions is investigated. For the present set of calculations the SF to aSF peak ratio is less than unity (\( \frac{P_{SF}}{P_{aSF}} < 1\)), which in turn suggests the dominance of asymmetric fission for above mentioned compound nuclei. The role of shell corrections and deformations of fragments in the fission dynamics is duly addressed. The calculated fission cross-sections show nice agreement with the experimental data, except for few energies above the Coulomb barrier. This disagreement is associated with the possible presence of non-compound nucleus (nCN) fission as higher energies are more prone to the nCN process. The study of fission fragment mass distributions is further extended to the isotopic analysis of above mentioned pre-actinide and actinide nuclei at common centre-of-mass energy \( E_{c.m.} \approx 80\) MeV near the Coulomb barrier. It is observed that the lighter isotopes exhibit symmetric fission distribution, whereas heavier ones prefer to decay via asymmetric path. A transition between SF and aSF occurs around fissioning nuclei with \( N/Z \approx 1.4\), showing the triple humped mass distribution suggesting comparable contribution of symmetric and asymmetric fission. Finally, the most energetic asymmetric light (\( A_L\)) and heavy (\( A_H\)) fission fragments are identified for a long isotopic chain of pre-actinide and actinide nuclei. Interestingly, the heavier asymmetric fission fragments are located near a proton number around \( Z=50\) for the pre-actinide region and \( Z=54\) for actinide nuclei.

This is a preview of subscription content, access via your institution.


  1. 1

    N. Bohr, J.A. Wheeler, Phys. Rev. 56, 426 (1939)

    ADS  Article  Google Scholar 

  2. 2

    U. Brosa, S. Grossmann, A. Müller, Phys. Rep. 197, 167 (1990)

    ADS  Article  Google Scholar 

  3. 3

    A.S. Jensen, J. Damgaard, Nucl. Phys. A 203, 578 (1973)

    ADS  Article  Google Scholar 

  4. 4

    C. Wagemans, The Nuclear Fission Process (CRC Press, 1991)

  5. 5

    A.N. Andreyev, M. Huyse, P.V. Duppen, Rev. Mod. Phys. 85, 1541 (2013)

    ADS  Article  Google Scholar 

  6. 6

    A.N. Andreyev et al., Phys. Rev. Lett. 105, 252502 (2010)

    ADS  Article  Google Scholar 

  7. 7

    A.N. Andreyev, G.G. Adamian, N.V. Antonenko, A.N. Andreyev, Phys. Rev. C 88, 047604 (2013)

    ADS  Article  Google Scholar 

  8. 8

    M.K. Sharma, S. Kanwar, G. Sawhney, R.K. Gupta, Phys. Rev. C 85, 064602 (2012)

    ADS  Article  Google Scholar 

  9. 9

    G. Sawhney, G. Kaur, M.K. Sharma, R.K. Gupta, Phys. Rev. C 88, 034603 (2013)

    ADS  Article  Google Scholar 

  10. 10

    G. Sawhney, R. Kumar, M.K. Sharma, Phys. Rev. C 86, 034613 (2012)

    ADS  Article  Google Scholar 

  11. 11

    M. Kaur, M.K. Sharma, Phys. Rev. C 85, 054605 (2012)

    ADS  Article  Google Scholar 

  12. 12

    M. Kaur, M.K. Sharma, R.K. Gupta, Phys. Rev. C 86, 064610 (2012)

    ADS  Article  Google Scholar 

  13. 13

    B.B. Singh, M.K. Sharma, R.K. Gupta, Phys. Rev. C 77, 054613 (2008)

    ADS  Article  Google Scholar 

  14. 14

    A. Kaur, G. Kaur, M.K. Sharma, Braz. J. Phys. 48, 608 (2018)

    ADS  Article  Google Scholar 

  15. 15

    G. Kaur, K. Sandhu, A. Kaur, M.K. Sharma, Phys. Rev. C 97, 054602 (2018)

    ADS  Article  Google Scholar 

  16. 16

    A. Kaur, K. Sandhu, M.K. Sharma, Commun. Theor. Phys. 70, 565 (2018)

    ADS  Article  Google Scholar 

  17. 17

    A. Kaur, M.K. Sharma, to be published in Indian J. Pure Appl. Phys

  18. 18

    T. Banerjee et al., Phys. Rev. C 96, 014618 (2017)

    ADS  Article  Google Scholar 

  19. 19

    K.E. Rehm et al., Phys. Rev. Lett. 81, 3341 (1998)

    ADS  Article  Google Scholar 

  20. 20

    A.M. Samant, S. Kailas, A. Chatterjee, A. Shrivastava, A. Navin, P. Singh, Eur. Phys. J. A 7, 59 (2000)

    ADS  Google Scholar 

  21. 21

    H.J. Fink, J. Maruhn, W. Scheid, W. Greiner, Z. Phys. 268, 321 (1974)

    ADS  Article  Google Scholar 

  22. 22

    J. Maruhn, W. Greiner, Phys. Rev. Lett. 32, 548 (1974)

    ADS  Article  Google Scholar 

  23. 23

    R.K. Gupta, W. Scheid, W. Greiner, Phys. Rev. Lett. 35, 353 (1975)

    ADS  Article  Google Scholar 

  24. 24

    N.J. Davidson, S.S. Hsiao, J. Markram, H.G. Miller, Y. Tzeng, Nucl. Phys. A 570, 61c (1994)

    ADS  Article  Google Scholar 

  25. 25

    W. Myers, W.J. Swiatecki, Nucl. Phys. 81, 1 (1966)

    Article  Google Scholar 

  26. 26

    R.K. Gupta, R. Kumar, N.K. Dhiman, M. Balasubramaniam, W. Scheid, C. Beck, Phys. Rev. C 68, 014610 (2003)

    ADS  Article  Google Scholar 

  27. 27

    M. Balasubramaniam, R. Kumar, R.K. Gupta, C. Beck, W. Scheid, J. Phys. G: Nucl. Part. Phys. 29, 2703 (2003)

    ADS  Article  Google Scholar 

  28. 28

    W. Pauli, in Handbuck der Physik, Part I, Vol. 24, edited by H. Geiger, K. Sheel (Springer, Berlin, 1933) p. 120

  29. 29

    B. Padolsky, Phys. Rev. 32, 812 (1928)

    ADS  Article  Google Scholar 

  30. 30

    J. Eisenberg, W. Greiner, Nuclear Models (North Holland, Amsterdam, 1971)

  31. 31

    H. Kröger, W. Scheid, J. Phys. G: Nucl. Part. Phys. 6, L85 (1980)

    ADS  Article  Google Scholar 

  32. 32

    S.S. Malik, R.K. Gupta, Phys. Rev. C 39, 1992 (1989)

    ADS  Article  Google Scholar 

  33. 33

    D.N. Poenaru, R.A. Gherghescu, W. Greiner, Eur. Phys. J. A 24, 355 (2005)

    ADS  Article  Google Scholar 

  34. 34

    S. Yamaji, K.H. Ziegenhain, H.J. Fink, W. Greiner, W. Scheid, J. Phys. G 3, 1283 (1977)

    ADS  Article  Google Scholar 

  35. 35

    S. Yamaji, W. Scheid, H.J. Fink, W. Greiner, Z. Phys. A 278, 69 (1976)

    ADS  Article  Google Scholar 

  36. 36

    G. Royer, J. Mignen, J. Phys. G: Nucl. Part. Phys. 18, 1781 (1992)

    ADS  Article  Google Scholar 

  37. 37

    A.C. Berriman, D.J. Hinde, M. Dasgupta, C.R. Morton, R.D. Butt, J.O. Newton, Nature 413, 144 (2001)

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Amandeep Kaur.

Additional information

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: All data generated during this study are contained in this published article.]

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by P. Capel

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaur, A., Sharma, M.K. Fine structure effect among heavy-ion induced fission fragments at near and above barrier energies. Eur. Phys. J. A 55, 89 (2019).

Download citation