Fine structure effect among heavy-ion induced fission fragments at near and above barrier energies

  • Amandeep KaurEmail author
  • Manoj K. Sharma
Regular Article - Theoretical Physics


The fission decay analysis of 201Bi*, 206Po*, 212Rn*, 216Ra*, 227Pa* and 228U* nuclei produced in 19F-induced reactions at near and above barrier energies is carried out within the framework of dynamical cluster-decay model (DCM) based on quantum mechanical fragmentation theory (QMFT). The interplay between two modes of fission, i.e. symmetric (SF) and asymmetric (aSF), in the fission fragment mass distributions is investigated. For the present set of calculations the SF to aSF peak ratio is less than unity (\( \frac{P_{SF}}{P_{aSF}} < 1\)), which in turn suggests the dominance of asymmetric fission for above mentioned compound nuclei. The role of shell corrections and deformations of fragments in the fission dynamics is duly addressed. The calculated fission cross-sections show nice agreement with the experimental data, except for few energies above the Coulomb barrier. This disagreement is associated with the possible presence of non-compound nucleus (nCN) fission as higher energies are more prone to the nCN process. The study of fission fragment mass distributions is further extended to the isotopic analysis of above mentioned pre-actinide and actinide nuclei at common centre-of-mass energy \( E_{c.m.} \approx 80\) MeV near the Coulomb barrier. It is observed that the lighter isotopes exhibit symmetric fission distribution, whereas heavier ones prefer to decay via asymmetric path. A transition between SF and aSF occurs around fissioning nuclei with \( N/Z \approx 1.4\), showing the triple humped mass distribution suggesting comparable contribution of symmetric and asymmetric fission. Finally, the most energetic asymmetric light (\( A_L\)) and heavy (\( A_H\)) fission fragments are identified for a long isotopic chain of pre-actinide and actinide nuclei. Interestingly, the heavier asymmetric fission fragments are located near a proton number around \( Z=50\) for the pre-actinide region and \( Z=54\) for actinide nuclei.


  1. 1.
    N. Bohr, J.A. Wheeler, Phys. Rev. 56, 426 (1939)CrossRefGoogle Scholar
  2. 2.
    U. Brosa, S. Grossmann, A. Müller, Phys. Rep. 197, 167 (1990)CrossRefGoogle Scholar
  3. 3.
    A.S. Jensen, J. Damgaard, Nucl. Phys. A 203, 578 (1973)CrossRefGoogle Scholar
  4. 4.
    C. Wagemans, The Nuclear Fission Process (CRC Press, 1991)Google Scholar
  5. 5.
    A.N. Andreyev, M. Huyse, P.V. Duppen, Rev. Mod. Phys. 85, 1541 (2013)CrossRefGoogle Scholar
  6. 6.
    A.N. Andreyev et al., Phys. Rev. Lett. 105, 252502 (2010)CrossRefGoogle Scholar
  7. 7.
    A.N. Andreyev, G.G. Adamian, N.V. Antonenko, A.N. Andreyev, Phys. Rev. C 88, 047604 (2013)CrossRefGoogle Scholar
  8. 8.
    M.K. Sharma, S. Kanwar, G. Sawhney, R.K. Gupta, Phys. Rev. C 85, 064602 (2012)CrossRefGoogle Scholar
  9. 9.
    G. Sawhney, G. Kaur, M.K. Sharma, R.K. Gupta, Phys. Rev. C 88, 034603 (2013)CrossRefGoogle Scholar
  10. 10.
    G. Sawhney, R. Kumar, M.K. Sharma, Phys. Rev. C 86, 034613 (2012)CrossRefGoogle Scholar
  11. 11.
    M. Kaur, M.K. Sharma, Phys. Rev. C 85, 054605 (2012)CrossRefGoogle Scholar
  12. 12.
    M. Kaur, M.K. Sharma, R.K. Gupta, Phys. Rev. C 86, 064610 (2012)CrossRefGoogle Scholar
  13. 13.
    B.B. Singh, M.K. Sharma, R.K. Gupta, Phys. Rev. C 77, 054613 (2008)CrossRefGoogle Scholar
  14. 14.
    A. Kaur, G. Kaur, M.K. Sharma, Braz. J. Phys. 48, 608 (2018)CrossRefGoogle Scholar
  15. 15.
    G. Kaur, K. Sandhu, A. Kaur, M.K. Sharma, Phys. Rev. C 97, 054602 (2018)CrossRefGoogle Scholar
  16. 16.
    A. Kaur, K. Sandhu, M.K. Sharma, Commun. Theor. Phys. 70, 565 (2018)CrossRefGoogle Scholar
  17. 17.
    A. Kaur, M.K. Sharma, to be published in Indian J. Pure Appl. PhysGoogle Scholar
  18. 18.
    T. Banerjee et al., Phys. Rev. C 96, 014618 (2017)CrossRefGoogle Scholar
  19. 19.
    K.E. Rehm et al., Phys. Rev. Lett. 81, 3341 (1998)CrossRefGoogle Scholar
  20. 20.
    A.M. Samant, S. Kailas, A. Chatterjee, A. Shrivastava, A. Navin, P. Singh, Eur. Phys. J. A 7, 59 (2000)Google Scholar
  21. 21.
    H.J. Fink, J. Maruhn, W. Scheid, W. Greiner, Z. Phys. 268, 321 (1974)CrossRefGoogle Scholar
  22. 22.
    J. Maruhn, W. Greiner, Phys. Rev. Lett. 32, 548 (1974)CrossRefGoogle Scholar
  23. 23.
    R.K. Gupta, W. Scheid, W. Greiner, Phys. Rev. Lett. 35, 353 (1975)CrossRefGoogle Scholar
  24. 24.
    N.J. Davidson, S.S. Hsiao, J. Markram, H.G. Miller, Y. Tzeng, Nucl. Phys. A 570, 61c (1994)CrossRefGoogle Scholar
  25. 25.
    W. Myers, W.J. Swiatecki, Nucl. Phys. 81, 1 (1966)CrossRefGoogle Scholar
  26. 26.
    R.K. Gupta, R. Kumar, N.K. Dhiman, M. Balasubramaniam, W. Scheid, C. Beck, Phys. Rev. C 68, 014610 (2003)CrossRefGoogle Scholar
  27. 27.
    M. Balasubramaniam, R. Kumar, R.K. Gupta, C. Beck, W. Scheid, J. Phys. G: Nucl. Part. Phys. 29, 2703 (2003)CrossRefGoogle Scholar
  28. 28.
    W. Pauli, in Handbuck der Physik, Part I, Vol. 24, edited by H. Geiger, K. Sheel (Springer, Berlin, 1933) p. 120Google Scholar
  29. 29.
    B. Padolsky, Phys. Rev. 32, 812 (1928)CrossRefGoogle Scholar
  30. 30.
    J. Eisenberg, W. Greiner, Nuclear Models (North Holland, Amsterdam, 1971)Google Scholar
  31. 31.
    H. Kröger, W. Scheid, J. Phys. G: Nucl. Part. Phys. 6, L85 (1980)CrossRefGoogle Scholar
  32. 32.
    S.S. Malik, R.K. Gupta, Phys. Rev. C 39, 1992 (1989)CrossRefGoogle Scholar
  33. 33.
    D.N. Poenaru, R.A. Gherghescu, W. Greiner, Eur. Phys. J. A 24, 355 (2005)CrossRefGoogle Scholar
  34. 34.
    S. Yamaji, K.H. Ziegenhain, H.J. Fink, W. Greiner, W. Scheid, J. Phys. G 3, 1283 (1977)CrossRefGoogle Scholar
  35. 35.
    S. Yamaji, W. Scheid, H.J. Fink, W. Greiner, Z. Phys. A 278, 69 (1976)CrossRefGoogle Scholar
  36. 36.
    G. Royer, J. Mignen, J. Phys. G: Nucl. Part. Phys. 18, 1781 (1992)CrossRefGoogle Scholar
  37. 37.
    A.C. Berriman, D.J. Hinde, M. Dasgupta, C.R. Morton, R.D. Butt, J.O. Newton, Nature 413, 144 (2001)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and Materials ScienceThapar Institute of Engineering and TechnologyPatialaIndia

Personalised recommendations