Iterative approaches to the self-consistent nuclear energy density functional problem

Heavy ball dynamics and potential preconditioning

Abstract.

Large-scale applications of energy density functional (EDF) methods depend on fast and reliable algorithms to solve the associated non-linear self-consistency problem. When dealing with large single-particle variational spaces, existing solvers can become very slow, and their performance dependent on manual fine-tuning of numerical parameters. In addition, convergence can sensitively depend on particularities of the EDF’s parametrisation under consideration. Using the widely-used Skyrme EDF as an example, we investigate the impact of the parametrisation of the EDF, both in terms of the operator structures present and the size of coupling constants, on the convergence of numerical solvers. We focus on two aspects of the self-consistency cycle, which are the diagonalisation of a fixed single-particle Hamiltonian on one hand and the evolution of the mean-field densities and potentials on the other. Throughout the article we use a coordinate-space representation, for which the behaviour of algorithms can be straightforwardly analysed. We propose two algorithmic improvements that are easily implementable in existing solvers, heavy-ball dynamics and potential preconditioning. We demonstrate that these methods can be made virtually parameter-free, requiring no manual fine-tuning to achieve near-optimal performance except for isolated cases. The combination of both methods decreases substantially the CPU time required to obtain converged results. The improvements are illustrated for the MOCCa code that solves the self-consistent HFB problem in a 3d coordinate space representation for parametrisations of the standard Skyrme EDF at next-to-leading order in gradients and its extension to next-to-next-to-leading order.

This is a preview of subscription content, log in to check access.

References

  1. 1

    M. Bender, P.-H. Heenen, P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003)

    ADS  Article  Google Scholar 

  2. 2

    W. Ryssens, M. Bender, P.-H. Heenen, Phys. Rev. C 92, 064318 (2015)

    ADS  Article  Google Scholar 

  3. 3

    A. Arzhanov, T.R. Rodríguez, G. Martínez-Pinedo, Phys. Rev. C 94, 054319 (2016)

    ADS  Article  Google Scholar 

  4. 4

    S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. Lett. 102, 152503 (2009)

    ADS  Article  Google Scholar 

  5. 5

    M. Kortelainen, J. McDonnell, W. Nazarewicz, E. Olsen, P.-G. Reinhard, J. Sarich, N. Schunck, S.M. Wild, D. Davesne, J. Erler, A. Pastore, Phys. Rev. C 89, 054314 (2014)

    ADS  Article  Google Scholar 

  6. 6

    B.G. Carlsson, J. Dobaczewski, M. Kortelainen, Phys. Rev. C 78, 044326 (2008)

    ADS  Article  Google Scholar 

  7. 7

    F. Raimondi, B.G. Carlsson, J. Dobaczewski, Phys. Rev. C 83, 054311 (2011)

    ADS  Article  Google Scholar 

  8. 8

    P. Becker, D. Davesne, J. Meyer, J. Navarro, A. Pastore, Phys. Rev. C 96, 044330 (2017)

    ADS  Article  Google Scholar 

  9. 9

    J.A. Maruhn, P.-G. Reinhard, P.D. Stevenson, A.S. Umar, Comput. Phys. Commun. 185, 2195 (2014)

    ADS  Article  Google Scholar 

  10. 10

    P. Bonche, H. Flocard, P.H. Heenen, Comput. Phys. Commun. 171, 175 (2005)

    ADS  Article  Google Scholar 

  11. 11

    W. Ryssens, Symmetry breaking in nuclear mean-field models, PhD Thesis, Université Libre de Bruxelles (2016)

  12. 12

    W. Ryssens, V. Hellemans, M. Bender, P.-H. Heenen, Comput. Phys. Commun. 187, 75 (2015)

    Article  Google Scholar 

  13. 13

    T. Matsuse, RIKEN Rev. 19, 18 (1998)

    Google Scholar 

  14. 14

    T. Nakatsukasa, Stochastic generation of low-energy configurations and configuration mixing calculation, presentation at the INT Program 13-1a, Computational and Theoretical Advances for Exotic Isotopes in the Medium Mass Region, held at the INT Seattle, USA, March 25 -- April 19, 2013

  15. 15

    H.J. Mang, B. Samadi, P. Ring, Z. Phys. A 279, 325 (1976)

    ADS  Article  Google Scholar 

  16. 16

    J.L. Egido, J. Lessing, V. Martin, L.M. Robledo, Nucl. Phys. A 594, 70 (1995)

    ADS  Article  Google Scholar 

  17. 17

    L.M. Robledo, G.F. Bertsch, Phys. Rev. C 84, 014312 (2011)

    ADS  Article  Google Scholar 

  18. 18

    E.N.E. van Dalen, H. Müther, Phys. Rev. C 90, 034312 (2014)

    ADS  Article  Google Scholar 

  19. 19

    R. Jodon, M. Bender, K. Bennaceur, J. Meyer, Phys. Rev. C 94, 024335 (2016)

    ADS  Article  Google Scholar 

  20. 20

    P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer Verlag, 1980)

  21. 21

    J.C. Pei et al., Phys. Rev. C 90, 024317 (2014)

    ADS  Article  Google Scholar 

  22. 22

    B. Gall et al., Z. Phys. A 348, 183 (1994)

    ADS  Article  Google Scholar 

  23. 23

    D. Baye, P.-H. Heenen, J. Phys. A 19, 2041 (1986)

    ADS  MathSciNet  Article  Google Scholar 

  24. 24

    T. Lesinski, M. Bender, K. Bennaceur, T. Duguet, J. Meyer, Phys. Rev. C 76, 014312 (2007)

    ADS  Article  Google Scholar 

  25. 25

    M. Bender, K. Bennaceur, T. Duguet, P.-H. Heenen, T. Lesinski, J. Meyer, Phys. Rev. C 80, 064302 (2009)

    ADS  Article  Google Scholar 

  26. 26

    V. Hellemans, P.-H. Heenen, M. Bender, Phys. Rev. C 85, 014326 (2012)

    ADS  Article  Google Scholar 

  27. 27

    S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. C 82, 035804 (2010)

    ADS  Article  Google Scholar 

  28. 28

    J. Sadoudi, T. Duguet, J. Meyer, M. Bender, Phys. Rev. C 88, 064326 (2013)

    ADS  Article  Google Scholar 

  29. 29

    J. Sadoudi, M. Bender, K. Bennaceur, D. Davesne, R. Jodon, T. Duguet, Phys. Scr. T 154, 014013 (2013)

    ADS  Article  Google Scholar 

  30. 30

    E. Perlińska, S.G. Rohoziński, J. Dobaczewski, W. Nazarewicz, Phys. Rev. C 69, 014316 (2004)

    ADS  Article  Google Scholar 

  31. 31

    W. Ryssens, M. Bender, Implementation of N2LO functionals, in preparation

  32. 32

    P. Pulay, Chem. Phys. Lett. 73, 393 (1980)

    ADS  Article  Google Scholar 

  33. 33

    Y. Zhou, J.R. Chelikowsky, Y. Saad, J. Comput. Phys. 274, 770 (2014)

    ADS  Article  Google Scholar 

  34. 34

    M.V. Stoitsov, J. Dobaczewski, W. Nazarewicz, P. Ring, Comput. Phys. Commun. 167, 45 (2005)

    ADS  Article  Google Scholar 

  35. 35

    J. Dobaczewski, J. Dudek, Comput. Phys. Commun. 102, 183 (1997)

    ADS  Article  Google Scholar 

  36. 36

    K. Bennaceur, Lenteur HFB Code, unpublished

  37. 37

    C. Rigollet, P. Bonche, H. Flocard, P.-H. Heenen, Phys. Rev. C 59, 3120 (1999)

    ADS  Article  Google Scholar 

  38. 38

    M. Bender, K. Rutz, P.-G. Reinhard, J.A. Maruhn, Eur. Phys. J. A 8, 59 (2008)

    ADS  Article  Google Scholar 

  39. 39

    Y. Saad, Numerical Methods for Large Eigenvalue Problems: Revised Edition (Society for Industrial and Applied Mathematics, Philadelphia, 2011)

  40. 40

    W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vettering, Numerical Recipes: The Art of Scientific Computing, second edition (Cambridge University Press, Cambridge, 1992)

  41. 41

    K.T.R. Davies, H. Flocard, S. Krieger, M.S. Weiss, Nucl. Phys. A 342, 111 (1980)

    ADS  Article  Google Scholar 

  42. 42

    P.-G. Reinhard, R.Y. Cusson, Nucl. Phys. A 378, 418 (1982)

    ADS  Article  Google Scholar 

  43. 43

    G. Goh, Why Momentum Really Works (Distill, 2017)

  44. 44

    N. Qian, Neural Netw. 12, 145 (1999)

    Article  Google Scholar 

  45. 45

    B.T. Polyak, USSR Comput. Math. Math. Phys. 4, 1 (1964)

    Article  Google Scholar 

  46. 46

    Y. Nesterov, Introductory Lectures on Convex Optimisation (Springer Verlag US, Boston, 2004)

  47. 47

    C.K. Gan, P.D. Haynes, M.C. Payne, Comput. Phys. Commun. 134, 33 (2001)

    ADS  Article  Google Scholar 

  48. 48

    P. Bader, S. Blanes, F. Casas, J. Chem. Phys. 139, 124117 (2013)

    ADS  Article  Google Scholar 

  49. 49

    R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)

    ADS  Article  Google Scholar 

  50. 50

    J. Hutter, WIREs Comput. Mol. Sci. 2, 604 (2012)

    Article  Google Scholar 

  51. 51

    L. Lin, C. Yang, SIAM J. Sci. Comput. 35, S277 (2012)

    Article  Google Scholar 

  52. 52

    V. Hellemans et al., Phys. Rev. C 88, 064323 (2013)

    ADS  Article  Google Scholar 

  53. 53

    T. Lesinski, K. Bennaceur, T. Duguet, J. Meyer, Phys. Rev. C 74, 044315 (2006)

    ADS  Article  Google Scholar 

  54. 54

    A. Pastore, D. Davesne, J. Navarro, Phys. Rep. 563, 1 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  55. 55

    M. Martini, A. De Pace, K. Bennaceur, Spurious finite-size instabilities of a new Gogny interaction suitable for astrophysical applications, arXiv:1806.02080

  56. 56

    G. Gonzalez-Boquera, M. Centenelles, X. Viñas, L.M. Robledo, Comment on the manuscript 1806.02080v1 entitled “Spurious finite-size instabilities of a new Gogny interaction suitable for astrophysical applications”, arXiv:1807.10159

  57. 57

    M. Kortelainen, T. Lesinski, J. Moré, W. Nazarewicz, J. Sarich, N. Schunck, M.V. Stoitsov, S. Wild, Phys. Rev. C 82, 024313 (2010)

    ADS  Article  Google Scholar 

  58. 58

    M. Kortelainen, J. McDonnell, W. Nazarewicz, P.-G. Reinhard, J. Sarich, N. Schunck, M.V. Stoitsov, S.M. Wild, Phys. Rev. C 85, 024304 (2012)

    ADS  Article  Google Scholar 

  59. 59

    G.P. Kerker, Phys. Rev. B 23, 3082 (1981)

    ADS  Article  Google Scholar 

  60. 60

    V. Blum, G. Lauritsch, J.A. Maruhn, P.-G. Reinhard, J. Comput. Phys. 100, 364 (1992)

    ADS  Article  Google Scholar 

  61. 61

    A. Baran et al., Phys. Rev. C 78, 014318 (2008)

    ADS  Article  Google Scholar 

  62. 62

    P. Pulay, J. Comput. Chem. 3, 556 (1982)

    Article  Google Scholar 

  63. 63

    K.N. Kudin, G.E. Scuseria, E. Cancès, J. Chem. Phys. 116, 8255 (2002)

    ADS  Article  Google Scholar 

  64. 64

    W. Ryssens, M. Bender, K. Bennaceur, J. Meyer, P.-H. Heenen, Phys. Rev. C 99, 044315 (2019)

    ADS  Article  Google Scholar 

  65. 65

    W. Ryssens, M. Bender, P.-H. Heenen, in preparation.

  66. 66

    P. Bonche, H. Flocard, P.-H. Heenen, Nucl. Phys. A 467, 115 (1987)

    ADS  Article  Google Scholar 

  67. 67

    J. Terasaki, P.-H. Heenen, H. Flocard, P. Bonche, Nucl. Phys. A 600, 371 (1996)

    ADS  Article  Google Scholar 

  68. 68

    N. Schunck et al., Comput. Phys. Commun. 183, 166 (2012)

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to W. Ryssens.

Additional information

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All relevant data are contained in the published article.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by T. Duguet

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ryssens, W., Bender, M. & Heenen, P.-. Iterative approaches to the self-consistent nuclear energy density functional problem. Eur. Phys. J. A 55, 93 (2019). https://doi.org/10.1140/epja/i2019-12766-6

Download citation