Advertisement

MITA: A Multilayer Ionization-chamber Telescope Array for low-energy reactions with exotic nuclei

  • N. R. Ma
  • L. YangEmail author
  • C. J. Lin
  • H. Yamaguchi
  • D. X. Wang
  • L. J. Sun
  • M. Mazzocco
  • H. M. Jia
  • S. Hayakawa
  • D. Kahl
  • S. M. Cha
  • G. X. Zhang
  • F. Yang
  • Y. Y. Yang
  • C. Signorini
  • Y. Sakaguchi
  • K. Abe
  • M. La Commara
  • D. Pierroutsakou
  • C. Parascandolo
  • E. Strano
  • A. Kim
  • K. Y. Chae
  • M. S. Kwag
  • G. L. Zhang
  • M. Pan
  • X. X. Xu
  • P. W. Wen
  • F. P. Zhong
  • H. H. Sun
  • G. Guo
Special Article - New Tools and Techniques
  • 30 Downloads

Abstract.

We report on the development of a new, portable detector array for charged particles with a low detection threshold to study the reaction mechanisms of exotic nuclear systems at energies around the Coulomb barrier. In order to identify both light and heavy particles simultaneously, the array consists of ten units of \( \Delta E\)-\( E_{\mathrm{R}}\) telescopes, where each one is made up of four detection layers: one ionization chamber, one 40 (or 60)μm double-sided silicon strip detector and two quadrant silicon detectors with thicknesses of 300μm and 1000 (or 1500)μm, respectively. The frame of the ionization chamber is innovatively designed with printed circuit boards, thus the mass of each telescopic unit was reduced significantly which eases transport and installation requirements to different radioactive ion beam lines around the globe. The commissioning experiments focused on elucidating several reaction mechanisms encountered in the 17F + 58Ni and 17F + 208Pb systems, and we demonstrated that the array has a sufficient capability to enable charged particle identification over a large range of Z. Light particles like p, d, \( \alpha\) as well as heavy ions like 16O and 17F can be clearly distinguished. Considering these properties, this newly developed array enables in-depth investigation of the novel reaction mechanisms which are manifested in the collisions of exotic nuclei with differing isotopes.

References

  1. 1.
    I. Tanihata, Prog. Part. Nucl. Phys. 35, 505 (1995)CrossRefGoogle Scholar
  2. 2.
    I. Tanihata, Prog. Theor. Phys. Suppl. 146, 1 (2002)CrossRefGoogle Scholar
  3. 3.
    A. Ozawa et al., Phys. Rev. Lett. 84, 5493 (2000)CrossRefGoogle Scholar
  4. 4.
    C. Signorini, Nucl. Phys. A 693, 190 (2001)CrossRefGoogle Scholar
  5. 5.
    Y. Blumenfeld et al., Nucl. Instrum. Methods Phys. Res. A 421, 471 (1999)CrossRefGoogle Scholar
  6. 6.
    E. Pollacco et al., Eur. Phys. J. A 25, 287 (2005)CrossRefGoogle Scholar
  7. 7.
    G. Marquinez-Duran et al., Nucl. Instrum. Methods Phys. Res. A 755, 69 (2014)CrossRefGoogle Scholar
  8. 8.
    M. Romoli et al., IEEE Trans. Nucl. Sci. 52, 1860 (2005)CrossRefGoogle Scholar
  9. 9.
    M. Romoli et al., Nucl. Instrum. Methods Phys. Res. A 266, 4637 (2008)CrossRefGoogle Scholar
  10. 10.
    E. Strano et al., Nucl. Instrum. Methods Phys. Res. B 317, 657 (2013)CrossRefGoogle Scholar
  11. 11.
    D. Pierroutsakou et al., Nucl. Instrum. Methods Phys. Res. A 834, 46 (2016)CrossRefGoogle Scholar
  12. 12.
    J.Pouthas et al., Nucl. Instrum. Methods Phys. Res. A 357, 418 (1995)CrossRefGoogle Scholar
  13. 13.
    K. Kwiatkowski et al., Nucl. Instrum. Methods Phys. Res. A 360, 571 (1995)CrossRefGoogle Scholar
  14. 14.
    I. Iori et al., Nucl. Instrum. Methods Phys. Res. A 325, 458 (1993)CrossRefGoogle Scholar
  15. 15.
    N.R. Ma et al., Chin. Phys. C 40, 116004 (2016)CrossRefGoogle Scholar
  16. 16.
    Z. Sun et al., Nucl. Instrum. Methods Phys. Res. A 503, 496 (2003)CrossRefGoogle Scholar
  17. 17.
    J.J. He et al., Nucl. Instrum. Methods Phys. Res. A 680, 43 (2012)CrossRefGoogle Scholar
  18. 18.
    S. Kubono et al., Eur. Phys. J. A 13, 217 (2002)Google Scholar
  19. 19.
    Y. Yanagisawa et al., Nucl. Instrum. Methods Phys. Res. A 539, 74 (2005)CrossRefGoogle Scholar
  20. 20.
    X.X. Xu et al., Nucl. Sci. Tech. 29, 73 (2018)CrossRefGoogle Scholar
  21. 21.
    L.J. Sun et al., At. Energy Sci. Technol. 49, 336 (2015)Google Scholar
  22. 22.
    P.F. Bao et al., Chin. Phys. C 38, 126001 (2014)CrossRefGoogle Scholar
  23. 23.
    S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003)CrossRefGoogle Scholar
  24. 24.
    H. Yamaguchi et al., Nucl. Instrum. Methods Phys. Res. A 589, 150 (2008)CrossRefGoogle Scholar
  25. 25.
    H. Kumagai et al., Nucl. Instrum. Methods Phys. Res. A 470, 562 (2001)CrossRefGoogle Scholar
  26. 26.
    L.J. Sun et al., Nucl. Instrum. Methods Phys. Res. A 804, 1 (2015)CrossRefGoogle Scholar
  27. 27.
    L.J. Sun et al., Phys. Rev. C 95, 014314 (2017)CrossRefGoogle Scholar
  28. 28.
    X.X. Xu et al., Phys. Lett. B 766, 312 (2017)CrossRefGoogle Scholar
  29. 29.
    L. Yang et al., Phys. Rev. C 95, 034616 (2017)CrossRefGoogle Scholar
  30. 30.
    L. Yang et al., Phys. Rev. C 96, 044615 (2017)CrossRefGoogle Scholar
  31. 31.
    L. Yang et al., Phys. Rev. Lett. 119, 042503 (2017)CrossRefGoogle Scholar
  32. 32.
    J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010)CrossRefGoogle Scholar
  33. 33.
    Y.Y. Yang et al., Nucl. Instrum. Methods Phys. Res. A 701, 1 (2013)CrossRefGoogle Scholar
  34. 34.
    G.X. Zhang et al., Nucl. Instrum. Methods Phys. Res. A 846, 23 (2017)CrossRefGoogle Scholar
  35. 35.
    G.L. Zhang et al., Nucl. Sci. Tech. 28, 104 (2017)CrossRefGoogle Scholar
  36. 36.
    G.L. Zhang et al., Phys. Rev. C 97, 044618 (2018)CrossRefGoogle Scholar
  37. 37.
    R.S.S. Fernbach, T.B. Taylor, Phys. Rev. 75, 1352 (1949)CrossRefGoogle Scholar
  38. 38.
    M. Mazzocco et al., Phys. Rev. C 82, 054604 (2010)CrossRefGoogle Scholar
  39. 39.
    J. Lei, A.M. Moro, Phys. Rev. Lett. 122, 042503 (2019)CrossRefGoogle Scholar
  40. 40.
    E.F. Aguilera et al., Phys. Rev. Lett. 107, 092701 (2011)CrossRefGoogle Scholar
  41. 41.
    A. Gavron, Phys. Rev. C 21, 230 (1980)CrossRefGoogle Scholar
  42. 42.
    P. Amador-Valenzuela et al., J. Phys. Conf. Ser. 492, 012003 (2014)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • N. R. Ma
    • 1
  • L. Yang
    • 1
    • 2
    Email author
  • C. J. Lin
    • 1
    • 10
    • 11
  • H. Yamaguchi
    • 2
  • D. X. Wang
    • 1
  • L. J. Sun
    • 1
  • M. Mazzocco
    • 3
    • 4
  • H. M. Jia
    • 1
  • S. Hayakawa
    • 2
  • D. Kahl
    • 2
  • S. M. Cha
    • 5
  • G. X. Zhang
    • 6
  • F. Yang
    • 1
  • Y. Y. Yang
    • 7
  • C. Signorini
    • 3
    • 4
  • Y. Sakaguchi
    • 2
  • K. Abe
    • 2
  • M. La Commara
    • 8
  • D. Pierroutsakou
    • 9
  • C. Parascandolo
    • 9
  • E. Strano
    • 3
    • 4
  • A. Kim
    • 5
  • K. Y. Chae
    • 5
  • M. S. Kwag
    • 5
  • G. L. Zhang
    • 6
  • M. Pan
    • 6
  • X. X. Xu
    • 1
  • P. W. Wen
    • 1
  • F. P. Zhong
    • 1
    • 10
  • H. H. Sun
    • 1
    • 11
  • G. Guo
    • 1
    • 11
  1. 1.Department of Nuclear PhysicsChina Institute of Atomic EnergyBeijingChina
  2. 2.Center for Nuclear StudyUniversity of TokyoWako, SaitamaJapan
  3. 3.Dipartimento di FisicaUniversità di PadovaPadovaItaly
  4. 4.Istituto Nazionale di Fisica Nucleare-Sezione di PadovaPadovaItaly
  5. 5.Department of PhysicsSungkyunkwan UniversitySuwonKorea
  6. 6.School of Physics and Nuclear Energy EngineeringBeihang UniversityBeijingChina
  7. 7.Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
  8. 8.Department of PharmacyUniversity Federico IINapoliItaly
  9. 9.Istituto Nazionale di Fisica Nucleare-Sezione di NapoliNapoliItaly
  10. 10.Department of PhysicsGuangxi Normal UniversityGuilinChina
  11. 11.National Innovation Center of Radiation ApplicationBeijingChina

Personalised recommendations