Advertisement

Efimov universality with Coulomb interaction

  • C. H. SchmicklerEmail author
  • H. -W. Hammer
  • E. Hiyama
Regular Article - Theoretical Physics
  • 38 Downloads

Abstract.

The universal properties of charged particles are modified by the presence of a long-range Coulomb interaction. We investigate the modification of Efimov universality as a function of the Coulomb strength using the Gaussian Expansion Method. The resonant short-range interaction is described by Gaussian potentials to which a Coulomb potential is added. We calculate binding energies and root mean square radii for the three- and four-body systems of charged particles and present our results in a generalised Efimov plot. We find that universal features can still be discerned for weak Coulomb interaction, but break down for strong Coulomb interaction. The maximum root mean square radius of the system decreases as the strength of the Coulomb interaction is increased and the probability distributions of the states become more concentrated inside the Coulomb barrier. As an example, we apply our universal model to nuclei with an \( \alpha\) cluster substructure. Our results point to strong non-universal contributions in that sector.

References

  1. 1.
    V. Efimov, Phys. Lett. B 33, 563 (1970)ADSCrossRefGoogle Scholar
  2. 2.
    E. Braaten, H.-W. Hammer, Phys. Rep. 428, 259 (2006) arXiv:cond-mat/0410417v3 [cond-mat.other]ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    A.C. Phillips, Nucl. Phys. A 107, 209 (1968)ADSCrossRefGoogle Scholar
  4. 4.
    J.A. Tjon, Phys. Lett. B 56, 217 (1975)ADSCrossRefGoogle Scholar
  5. 5.
    E. Braaten, H.-W. Hammer, M. Kusunoki, Phys. Rev. A 67, 022505 (2003) arXiv:cond-mat/0201281ADSCrossRefGoogle Scholar
  6. 6.
    L. Platter, H.-W. Hammer, U.-G. Meißner, Phys. Rev. A 70, 052101 (2004) arXiv:cond-mat/0404313ADSCrossRefGoogle Scholar
  7. 7.
    H.W. Hammer, L. Platter, Eur. Phys. J. A 32, 113 (2007) arXiv:nucl-th/0610105 [nucl-th]ADSCrossRefGoogle Scholar
  8. 8.
    J. von Stecher, J.P. D'Incao, C.H. Greene, Nat. Phys. 5, 417 (2009)CrossRefGoogle Scholar
  9. 9.
    A. Deltuva, Phys. Rev. A 82, 040701 (2010) arXiv:1009.1295 [physics.atm-clus]ADSCrossRefGoogle Scholar
  10. 10.
    A. Deltuva, Few Body Syst. 54, 569 (2013) arXiv:1202.0167v1 [physics.atom-ph]ADSCrossRefGoogle Scholar
  11. 11.
    J. von Stecher, Phys. Rev. Lett. 107, 200402 (2011) arXiv:1106.2319 [cond-mat.quant-gas]ADSCrossRefGoogle Scholar
  12. 12.
    M. Gattobigio, A. Kievsky, M. Viviani, Phys. Rev. A 86, 042513 (2012) arXiv:1206.0854 [physics.atm-clus]ADSCrossRefGoogle Scholar
  13. 13.
    A. Kievsky, N.K. Timofeyuk, M. Gattobigio, Phys. Rev. A 90, 032504 (2014) arXiv:1405.2371 [cond-mat.quant-gas]ADSCrossRefGoogle Scholar
  14. 14.
    B. Bazak, M. Eliyahu, U. van Kolck, Phys. Rev. A 94, 052502 (2016) arXiv:1607.01509 [cond-mat.quant-gas]ADSCrossRefGoogle Scholar
  15. 15.
    P. Naidon, S. Endo, Rep. Prog. Phys. 80, 056001 (2017) arXiv:1610.09805 [quant-ph]ADSCrossRefGoogle Scholar
  16. 16.
    F. Ferlaino, R. Grimm, Physics 3, 9 (2010)CrossRefGoogle Scholar
  17. 17.
    A. Zenesini, B. Huang, M. Berninger, S. Besler, H.-C. Nägerl, F. Ferlaino, R. Grimm, C.H. Greene, J. von Stecher, New J. Phys. 15, 043040 (2013) arXiv:1205.1921 [cond-mat.quant-gas]ADSCrossRefGoogle Scholar
  18. 18.
    A.S. Jensen, K. Riisager, D.V. Fedorov, E. Garrido, Rev. Mod. Phys. 76, 215 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    H.-W. Hammer, L. Platter, Annu. Rev. Nucl. Part. Sci. 60, 207 (2010) arXiv:1001.1981 [nucl-th]ADSCrossRefGoogle Scholar
  20. 20.
    H.-W. Hammer, C. Ji, D.R. Phillips, J. Phys. G 44, 103002 (2017) arXiv:1702.08605 [nucl-th]ADSCrossRefGoogle Scholar
  21. 21.
    V. Efimov, Comments Nucl. Part. Phys. 19, 271 (1990)Google Scholar
  22. 22.
    T. Barford, M.C. Birse, Phys. Rev. C 67, 064006 (2003) arXiv:hep-ph/0206146ADSCrossRefGoogle Scholar
  23. 23.
    H.-W. Hammer, R. Higa, Eur. Phys. J. A 37, 193 (2008) arXiv:0804.4643 [nucl-th]ADSCrossRefGoogle Scholar
  24. 24.
    D.V. Fedorov, A.S. Jensen, K. Riisager, Phys. Rev. C 49, 201 (1994)ADSCrossRefGoogle Scholar
  25. 25.
    S.-I. Ando, M.C. Birse, J. Phys. G 37, 105108 (2010) arXiv:1003.4383 [nucl-th]ADSCrossRefGoogle Scholar
  26. 26.
    S. König, H.-W. Hammer, Phys. Rev. C 83, 064001 (2011) arXiv:1101.5939 [nucl-th]ADSCrossRefGoogle Scholar
  27. 27.
    J. Vanasse, D.A. Egolf, J. Kerin, S. König, R.P. Springer, Phys. Rev. C 89, 064003 (2014) arXiv:1402.5441 [nucl-th]ADSCrossRefGoogle Scholar
  28. 28.
    S. König, H.W. Grießhammer, H.-W. Hammer, U. van Kolck, J. Phys. G 43, 055106 (2016) arXiv:1508.05085 [nucl-th]ADSCrossRefGoogle Scholar
  29. 29.
    S. König, H.W. Grießhammer, H.-W. Hammer, U. van Kolck, Phys. Rev. Lett. 118, 202501 (2017) arXiv:1607.04623 [nucl-th]ADSCrossRefGoogle Scholar
  30. 30.
    E. Hiyama, Y. Kino, M. Kamimura, Prog. Part. Nucl. Phys. 51, 223 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, Y. Yamamoto, Phys. Rev. C 53, 2075 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, Y. Yamamoto, Prog. Theor. Phys. 97, 881 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    E. Hiyama, M. Kamimura, K. Miyazaki, T. Motoba, Phys. Rev. C 59, 2351 (1999)ADSCrossRefGoogle Scholar
  34. 34.
    E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, Y. Yamamoto, Phys. Rev. C 65, 011301 (2002) arXiv:nucl-th/0106070ADSCrossRefGoogle Scholar
  35. 35.
    E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, Y. Yamamoto, Phys. Rev. C 66, 024007 (2002) arXiv:nucl-th/0204059ADSCrossRefGoogle Scholar
  36. 36.
    E. Hiyama, M. Kamimura, Y. Yamamoto, T. Motoba, Phys. Rev. Lett. 104, 212502 (2010) arXiv:1006.2626 [nucl-th]ADSCrossRefGoogle Scholar
  37. 37.
    E. Hiyama, M. Kamimura, Phys. Rev. A 85, 022502 (2012) arXiv:1111.4370 [physics.atom-ph]ADSCrossRefGoogle Scholar
  38. 38.
    E. Hiyama, M. Kamimura, Phys. Rev. A 85, 062505 (2012) arXiv:1203.3130 [physics.atom-ph]ADSCrossRefGoogle Scholar
  39. 39.
    E. Hiyama, M. Kamimura, Phys. Rev. A 90, 052514 (2014) arXiv:1409.2501 [cond-mat.quant-gas]ADSCrossRefGoogle Scholar
  40. 40.
    C.H. Schmickler, H.W. Hammer, A.G. Volosniev, arXiv:1904.00913 [nucl-th] (2019)Google Scholar
  41. 41.
    M. Gattobigio, A. Kievsky, M. Viviani, Phys. Rev. A 84, 052503 (2011) arXiv:1106.3853v2 [physics.atm-clus]ADSCrossRefGoogle Scholar
  42. 42.
    D. Blume, Y. Yan, Phys. Rev. Lett. 113, 213201 (2014) arXiv:1410.2314 [cond-mat.quant-gas]ADSCrossRefGoogle Scholar
  43. 43.
    C.H. Schmickler, H.-W. Hammer, E. Hiyama, Phys. Rev. A 95, 052710 (2017) arXiv:1703.01147 [cond-mat.quant-gas]ADSCrossRefGoogle Scholar
  44. 44.
    S. König, Effective quantum theories with short- and long-range forces, PhD Thesis, Rheinische Friedrich-Wilhelms-Universität Bonn (2013)Google Scholar
  45. 45.
    H.A. Bethe, Phys. Rev. 76, 38 (1949)ADSCrossRefGoogle Scholar
  46. 46.
    H. van Haeringen, L.P. Kok, Phys. Rev. A 26, 1218 (1982)ADSCrossRefGoogle Scholar
  47. 47.
    A. Deltuva, Phys. Rev. A 85, 012708 (2012) arXiv:1201.2326v1 [physics.atom-ph]ADSCrossRefGoogle Scholar
  48. 48.
    D.V. Fedorov, A.S. Jensen, Phys. Lett. B 389, 631 (1996) arXiv:nucl-th/9608028ADSCrossRefGoogle Scholar
  49. 49.
    C.H. Schmickler, arXiv:1812.01730 [nucl-th] (2018)Google Scholar
  50. 50.
    D.R. Tilley, H.R. Weller, C.M. Cheves, Nucl. Phys. A 564, 1 (1993)ADSCrossRefGoogle Scholar
  51. 51.
    R. Higa, H.-W. Hammer, U. van Kolck, Nucl. Phys. A 809, 171 (2008) arXiv:0802.3426 [nucl-th]ADSCrossRefGoogle Scholar
  52. 52.
    J.H. Kelley, J.E. Purcell, C.G. Sheu, Nucl. Phys. A 968, 71 (2017)ADSCrossRefGoogle Scholar
  53. 53.
    D.R. Tilley, J.H. Kelley, J.L. Godwin, D.J. Millener, J.E. Purcell, C.G. Sheu, H.R. Weller, Nucl. Phys. A 745, 155 (2004)ADSCrossRefGoogle Scholar
  54. 54.
    D. Mathur, L.H. Andersen, P. Hvelplund, D. Kella, C.P. Safvan, J. Phys. B 28, 3415 (1995)ADSCrossRefGoogle Scholar
  55. 55.
    B. Hattendorf, B. Gusmini, L. Dorta, R.S. Houk, D. Günther, ChemPhysChem 17, 2640 (2016)CrossRefGoogle Scholar
  56. 56.
    M. Kunitski, S. Zeller, J. Voigtsberger, A. Kalinin, L.P.H. Schmidt, M. Schöffler, A. Czasch, W. Schöllkopf, R.E. Grisenti, T. Jahnke, D. Blume, R. Dörner, Science 348, 551 (2015) arXiv:1512.02036 [physics.atm-clus]ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • C. H. Schmickler
    • 1
    • 2
    Email author
  • H. -W. Hammer
    • 1
    • 3
  • E. Hiyama
    • 4
    • 2
  1. 1.Institut für KernphysikTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Nishina Center, RIKENSaitamaJapan
  3. 3.ExtreMe Matter Institute EMMIGSI Helmholtzzentrum für SchwerionenforschungDarmstadtGermany
  4. 4.Department of PhysicsKyushu UniversityFukuokaJapan

Personalised recommendations