Skip to main content
Log in

Quasi equilibrium state of expanding quantum fields and two-pion Bose-Einstein correlations in pp collisions at the LHC

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We argue that the two-particle momentum correlation functions of high-multiplicity \( p+p\) collisions at the LHC provide a signal for a ground state structure of a quasi equilibrium state of the longitudinally boost-invariant expanding quantum field which lies in the future light cone of a collision. The physical picture is that pions are produced by the expanding quantum emitter with two different scales approximately attributed to the expanding ideal gas in local equilibrium state and ground-state condensate. Specifically, we show that the effect of suppressing the two-particle Bose-Einstein momentum correlation functions increases with increasing transverse momentum of a like-sign pion pair due to different momentum dependence of the corresponding particle emission regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Heinz, R. Snellings, Annu. Rev. Nucl. Part. Sci. 63, 123 (2013) arXiv:1301.2826

    Article  ADS  Google Scholar 

  2. J. Noronha, Nucl. Phys. A 982, 78 (2019) arXiv:1807.06191

    Article  ADS  Google Scholar 

  3. Y. Zhou, Nucl. Phys. A 982, 71 (2019) arXiv:1810.06978

    Article  ADS  Google Scholar 

  4. CMS Collaboration, Phys. Lett. B 765, 193 (2017)

    Article  ADS  Google Scholar 

  5. W. Li, Nucl. Phys. A 967, 59 (2017) arXiv:1704.03576

    Article  ADS  Google Scholar 

  6. B. Schenke, Nucl. Phys. A 967, 105 (2017) arXiv:1704.03914

    Article  ADS  Google Scholar 

  7. T. Kalaydzhyan, E. Shuryak, Phys. Rev. C 91, 054913 (2015) arXiv:1503.05213

    Article  ADS  Google Scholar 

  8. Y. Hirono, E. Shuryak, Phys. Rev. C 91, 054915 (2015) arXiv:1412.0063

    Article  ADS  Google Scholar 

  9. M. Habich, G.A. Miller, P. Romatschke, W. Xiang, Eur. Phys. J. C 76, 408 (2016) arXiv:1512.05354

    Article  ADS  Google Scholar 

  10. R.D. Weller, P. Romatschke, Phys. Lett. B 774, 351 (2017) arXiv:1701.07145

    Article  ADS  Google Scholar 

  11. M. Spalinski, Phys. Rev. D 94, 085002 (2016) arXiv:1607.06381

    Article  ADS  MathSciNet  Google Scholar 

  12. P. Romatschke, Eur. Phys. J. C 77, 21 (2017) arXiv:1609.02820

    Article  ADS  Google Scholar 

  13. M.I. Podgoretsky, Fiz. Elem. Chast. At. Yad. 20, 628 (1989) (Sov. J. Part. Nucl. 20

    Google Scholar 

  14. D.H. Boal, C.-K. Gelbke, B.K. Jennings, Rev. Mod. Phys. 62, 553 (1990)

    Article  ADS  Google Scholar 

  15. U.A. Wiedemann, U. Heinz, Phys. Rep. 319, 145 (1999)

    Article  ADS  Google Scholar 

  16. R.M. Weiner, Phys. Rep. 327, 249 (2000)

    Article  ADS  Google Scholar 

  17. R.M. Weiner, Introduction to Bose-Einstein Correlations and Subatomic Interferometry (Wiley, New York, 2000)

  18. M. Lisa, S. Pratt, R. Soltz, U. Wiedemann, Annu. Rev. Nucl. Part. Sci. 55, 357 (2005)

    Article  ADS  Google Scholar 

  19. R. Lednický, Phys. Part. Nucl. 40, 307 (2009) arXiv:nucl-th/0501065

    Article  Google Scholar 

  20. ALICE Collaboration (K. Aamodt et al.), Phys. Rev. D 84, 112004 (2011)

    Article  ADS  Google Scholar 

  21. ATLAS Collaboration, Eur. Phys. J. C 75, 466 (2015)

    Article  ADS  Google Scholar 

  22. CMS Collaboration (A.M. Sirunyan et al.), Phys. Rev. C 97, 064912 (2018) arXiv:1712.07198

    Article  ADS  Google Scholar 

  23. Yu.M. Sinyukov, Nucl. Phys. A 566, 589c (1994)

    Article  ADS  Google Scholar 

  24. Yu.M. Sinyukov, in Hot Hadronic Matter: Theory and Experiment, edited by J. Letessier, H.H. Gutbrod, J. Rafelski (Plenum, New York, 1995) p. 309

  25. S.V. Akkelin, Yu.M. Sinyukov, Phys. Lett. B 356, 525 (1995)

    Article  ADS  Google Scholar 

  26. S.V. Akkelin, Yu.M. Sinyukov, Z. Phys. C 72, 501 (1996)

    Article  ADS  Google Scholar 

  27. V.M. Shapoval, P. Braun-Munzinger, Iu.A. Karpenko, Yu.M. Sinyukov, Nucl. Phys. A 929, 1 (2014) arXiv:1404.4501

    Article  ADS  Google Scholar 

  28. D. Zubarev, Nonequilibrium Statistical Thermodynamics (Studies in Soviet science, Consultants Bureau, 1974)

  29. D.N. Zubarev, A.V. Prozorkevich, S.A. Smolyanskii, Teor. Mat. Fiz. 40, 394 (1979) (Theor. Math. Phys. 40

    Article  Google Scholar 

  30. A. Hosoya, M.-a. Sakagami, M. Takao, Ann. Phys. 154, 229 (1984)

    Article  ADS  Google Scholar 

  31. D. Zubarev, V. Morozov, G. Röpke, Statistical Mechanics of Nonequilibrium Processes, Vol. 1, Basic Concepts. Kinetic Theory (Berlin, Akademie Verlag, 1996)

  32. D. Zubarev, V. Morozov, G. Röpke, Statistical Mechanics of Nonequilibrium Processes, Vol. 2, Relaxation and Hydrodynamic Processes (Berlin, Akademie Verlag, 1997)

  33. F. Becattini, L. Bucciantini, E. Grossi, L. Tinti, Eur. Phys. J. C 75, 191 (2015) arXiv:1403.6265

    Article  ADS  Google Scholar 

  34. T. Hayata, Y. Hidaka, T. Noumi, M. Hongo, Phys. Rev. D 92, 065008 (2015) arXiv:1503.04535

    Article  ADS  Google Scholar 

  35. M. Hongo, Ann. Phys. 383, 1 (2017) arXiv:1611.07074

    Article  ADS  MathSciNet  Google Scholar 

  36. A. Harutyunyan, A. Sedrakian, D.H. Rischke, Particles 1, 155 (2018) arXiv:1804.08267

    Google Scholar 

  37. Yu.M. Sinyukov, Preprint ITP-93-8E, 1993

  38. Yu.M. Sinyukov, Nucl. Phys. A 566, 589c (1994)

    Article  ADS  Google Scholar 

  39. Yu.M. Sinyukov, Heavy Ion Phys. 10, 113 (1999) arXiv:nucl-th/9909018

    Google Scholar 

  40. J.D. Bjorken, Phys. Rev. D 27, 140 (1983)

    Article  ADS  Google Scholar 

  41. N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982)

  42. F. Cooper, G. Frye, Phys. Rev. D 10, 186 (1974)

    Article  ADS  Google Scholar 

  43. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products (Academic, New York, 1980)

  44. C.M. Sommerfield, Ann. Phys. 84, 285 (1974)

    Article  ADS  Google Scholar 

  45. N.B. Narozhny, A.M. Fedotov, B.M. Karnakov, V.D. Mur, V.A. Belinskii, Phys. Rev. D 65, 025004 (2002) arXiv:hep-th/9906181

    Article  ADS  MathSciNet  Google Scholar 

  46. L.C.B. Crispino, A. Higuchi, G.E.A. Matsas, Rev. Mod. Phys. 80, 787 (2008) arXiv:0710.5373

    Article  ADS  Google Scholar 

  47. D. Polarski, A.A. Starobinsky, Class. Quantum Grav. 13, 377 (1996) arXiv:gr-qc/9504030

    Article  ADS  Google Scholar 

  48. J. Martin, V. Vennin, Phys. Rev. D 93, 023505 (2016) arXiv:1510.04038

    Article  ADS  MathSciNet  Google Scholar 

  49. D.V. Shirkov, Mod. Phys. Lett. A 24, 2802 (2009) arXiv:0903.3194

    Article  ADS  Google Scholar 

  50. J.-P. Gazeau, Coherent States in Quantum Physics (Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim, 2009)

  51. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995)

  52. C. Bloch, C. De Dominicis, Nucl. Phys. 7, 459 (1958)

    Article  Google Scholar 

  53. M. Gaudin, Nucl. Phys. 15, 89 (1960)

    Article  Google Scholar 

  54. N.N. Bogolubov, N.N. Bogolubov jr., An Introduction to Quantum Statistical Mechanics (Gordon and Breach, New York, 1992)

  55. S.R. de Groot, W.A. van Leeuwen, Ch.G. van Weert, Relativistic Kinetic Theory (North-Holland, Amsterdam, 1980)

  56. A.N. Makhlin, Yu.M. Sinyukov, Sov. J. Nucl. Phys. 46, 345 (1987)

    Google Scholar 

  57. A.N. Makhlin, Y.M. Sinyukov, Z. Phys. C 39, 69 (1988)

    Article  ADS  Google Scholar 

  58. Yu.M. Sinyukov, Nucl. Phys. A 498, 151c (1989)

    Article  ADS  Google Scholar 

  59. V.A. Khoze, A.D. Martin, M.G. Ryskin, V.A. Schegelsky, Eur. Phys. J. C 76, 193 (2016) arXiv:1601.08081

    Article  ADS  Google Scholar 

  60. V.A. Schegelsky, M.G. Ryskin, arXiv:1608.05218

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Akkelin.

Additional information

Communicated by G. Torrieri

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author's comment: All data generated during this study are contained in this published article.]

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkelin, S.V. Quasi equilibrium state of expanding quantum fields and two-pion Bose-Einstein correlations in pp collisions at the LHC. Eur. Phys. J. A 55, 78 (2019). https://doi.org/10.1140/epja/i2019-12755-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12755-9

Navigation