Skip to main content

Advertisement

Log in

Analytical model of an ion cloud cooled by collisions in a Paul trap

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

A simple model of a trapped ion cloud cooled by collisions in a buffer gas in a Paul trap is presented. It is based on the customary decomposition of the ion motion in micro- and macro- (or secular) motions and a statistical treatment of hard-sphere collisions and ion trajectories. The model also relies on the evidence that the effective trapping area in real Paul traps is limited to a certain radius, where the harmonics of the potential of order \(> 2\) become non negligible. The model yields analytical formulae for the properties of the ion cloud and equilibration times, which are in good agreement for a wide range of parameters with the results of a numerical simulation, whose reliability has been verified. When the confining potential is efficient enough to suppress evaporation from the trap, the model yields an effective temperature for the ions \(T_{eff}=2T/(1-\frac{m_{g}}{m})\), where T is the temperature of the buffer gas, m and \(m_{g}\) are the masses of the ions and gas molecules, respectively. The so-called Radio Frequency (RF) heating effect, responsible for \( T_{eff} > T\), is interpreted in light of the model as the result of an incomplete cooling of the ion motion, limited to the macromotion, while the net effect of the micromotion is to double the average ion kinetic energy for \(\frac{m}{m_{g}}\gg 1\). For \( \frac{m}{m_{g}} \le 1\), the incomplete cooling is not sufficient to overcome the thermal agitation of the cloud to which the micromotion participates; the ions are therefore led out of the trap. When a thermal equilibrium is found, the dimensions of the cloud are shown to be proportional to the square root of the effective temperature: \(\sigma_{x}=\sigma_{y}=\sigma_{r}=2\sigma_{z} \propto\sqrt{T_{eff}}\). In the frame of the model, the number of collisions required for the complete cooling of the ion cloud is simply approximated by \(\frac{m}{\mu}\cdot 3.5\), where μ is the reduced mass of the system. When the confining potential does not prevent evaporation from the trap, an approximate formula is derived for the evaporation rate that primarily depends on the ratio of the maximal energies of ions that can be trapped to the ion thermal energies. The comparison of the characteristic times of both processes permits to predict if the ion cloud will reach a thermal equilibrium before being evaporated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. https://en.wikipedia.org/wiki/RFQ_beam_cooler

  2. D. Lunney, The phase space volume of ion clouds in Paul traps, PhD Thesis, McGill University, Montreal, Canada (1992)

  3. M. Schubert, I. Siemers, R. Blatt, Appl. Phys. B 51, 414 (1990)

    Article  ADS  Google Scholar 

  4. F. Vedel, Int. J. Mass Spectrom. Ion Proc. 106, 33 (1991)

    Article  ADS  Google Scholar 

  5. H.G. Dehmelt, Adv. At. Mol. Phys. 3, 53 (1968)

    Article  ADS  Google Scholar 

  6. I. Siemers, R. Blatt, T. Sauter, W. Neuhauser, Phys. Rev. A 38, 38 (1988)

    Article  Google Scholar 

  7. Y.S. Nam, D.K. Weiss, R. Blümel, Phys. Lett. A 381, 3477 (2017)

    Article  ADS  Google Scholar 

  8. S. Gronert, J. Am. Soc. Mass Spectrom. 9, 845 (1998)

    Article  Google Scholar 

  9. W.A. Donald, G.N. Khairallah, R.A.J. O'Hair, J. Am. Soc. Mass Spectrom. 24, 811 (2013)

    Article  ADS  Google Scholar 

  10. D.E. Goeringer, S.A. McLuckey, J. Chem. Phys. 104, 2214 (1996)

    Article  ADS  Google Scholar 

  11. X. Fabian, F. Mauger, G. Quéméner, Ph. Velten, G. Ban, C. Couratin, P. Delahaye, D. Durand, B. Fabre, P. Finlay et al., Hyperfine Interact. 235, 87 (2015)

    Article  ADS  Google Scholar 

  12. F.G. Major, H.G. Dehmelt, Phys. Rev. 170, 91 (1968)

    Article  ADS  Google Scholar 

  13. E. Liénard, G. Ban, C. Couratin, P. Delahaye, D. Durand et al., Hyperfine Interact. 236, 1 (2015)

    Article  ADS  Google Scholar 

  14. P. Delahaye, to be published in Hyperfine Interact

  15. P. Delahaye, G. Ban, M. Benali, D. Durand, X. Fabian, X. Fléchard, M. Herbane, E. Liénard, A. Mery, Y. Merrer, G. Quemener, B.M. Retailleau, D. Rodriguez, J.C. Thomas, P. Ujic, The open LPC Paul trap for precision measurement in beta decay, to be published in Eur. Phys. J. A, arXiv:1810.09246 [physics.ins-det]

  16. R.E. March, J.F.J. Todd, Quadrupole Ion Trap Mass Spectrometry, in Chemical Analysis, a series of monographs on analytical chemistry and its applications, edited by J.D. Winefordner (Wiley, 2005)

  17. R. Alheit, S. Kleineidam, F. Vedel, M. Vedel, G. Werth, Int. J. Mass Spectrom. Ion Proc. 154, 155 (1996)

    Article  ADS  Google Scholar 

  18. L.A. Viehland, E.A. Mason, At. Nucl. Data Tables 60, 37 (1995)

    Article  ADS  Google Scholar 

  19. T. Kim, Buffer gas cooling of ions in an RF ion guide: a study of the cooling process and cooled beam properties, PhD Thesis, McGill University, Montreal (1997)

  20. S. Schwarz, Nucl. Instrum. Methods A 566, 233 (2006)

    Article  ADS  Google Scholar 

  21. G. Ban, G. Darius, D. Durand, X. Fléchard, M. Herbane, M. Labalme, E. Liénard, F. Mauger, O. Naviliat-Cuncic, C. Guénault et al., Nucl. Instrum. Methods A 518, 712 (2004)

    Article  ADS  Google Scholar 

  22. A. Kellerbauer, T. Kim, R.B. Moore, P. Varfalvy, Nucl. Instrum. Methods A 469, 276 (2001)

    Article  ADS  Google Scholar 

  23. R.G. DeVoe, Phys. Rev. Lett. 102, 063001 (2009)

    Article  ADS  Google Scholar 

  24. Wolfram Research, Inc., Mathematica, Version 11.3 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Delahaye.

Additional information

Communicated by K. Blaum

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author's comment: All data generated during this study are contained in this published article, the specific example of LPCTrap used for this study can easily be reproduced by any hard sphere calculation.]

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delahaye, P. Analytical model of an ion cloud cooled by collisions in a Paul trap. Eur. Phys. J. A 55, 83 (2019). https://doi.org/10.1140/epja/i2019-12740-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12740-4

Navigation