Analytical model of an ion cloud cooled by collisions in a Paul trap

  • P. DelahayeEmail author
Regular Article - Theoretical Physics


A simple model of a trapped ion cloud cooled by collisions in a buffer gas in a Paul trap is presented. It is based on the customary decomposition of the ion motion in micro- and macro- (or secular) motions and a statistical treatment of hard-sphere collisions and ion trajectories. The model also relies on the evidence that the effective trapping area in real Paul traps is limited to a certain radius, where the harmonics of the potential of order \(> 2\) become non negligible. The model yields analytical formulae for the properties of the ion cloud and equilibration times, which are in good agreement for a wide range of parameters with the results of a numerical simulation, whose reliability has been verified. When the confining potential is efficient enough to suppress evaporation from the trap, the model yields an effective temperature for the ions \(T_{eff}=2T/(1-\frac{m_{g}}{m})\), where T is the temperature of the buffer gas, m and \(m_{g}\) are the masses of the ions and gas molecules, respectively. The so-called Radio Frequency (RF) heating effect, responsible for \( T_{eff} > T\), is interpreted in light of the model as the result of an incomplete cooling of the ion motion, limited to the macromotion, while the net effect of the micromotion is to double the average ion kinetic energy for \(\frac{m}{m_{g}}\gg 1\). For \( \frac{m}{m_{g}} \le 1\), the incomplete cooling is not sufficient to overcome the thermal agitation of the cloud to which the micromotion participates; the ions are therefore led out of the trap. When a thermal equilibrium is found, the dimensions of the cloud are shown to be proportional to the square root of the effective temperature: \(\sigma_{x}=\sigma_{y}=\sigma_{r}=2\sigma_{z} \propto\sqrt{T_{eff}}\). In the frame of the model, the number of collisions required for the complete cooling of the ion cloud is simply approximated by \(\frac{m}{\mu}\cdot 3.5\), where μ is the reduced mass of the system. When the confining potential does not prevent evaporation from the trap, an approximate formula is derived for the evaporation rate that primarily depends on the ratio of the maximal energies of ions that can be trapped to the ion thermal energies. The comparison of the characteristic times of both processes permits to predict if the ion cloud will reach a thermal equilibrium before being evaporated.


  1. 1.
  2. 2.
    D. Lunney, The phase space volume of ion clouds in Paul traps, PhD Thesis, McGill University, Montreal, Canada (1992)Google Scholar
  3. 3.
    M. Schubert, I. Siemers, R. Blatt, Appl. Phys. B 51, 414 (1990)ADSCrossRefGoogle Scholar
  4. 4.
    F. Vedel, Int. J. Mass Spectrom. Ion Proc. 106, 33 (1991)ADSCrossRefGoogle Scholar
  5. 5.
    H.G. Dehmelt, Adv. At. Mol. Phys. 3, 53 (1968)ADSCrossRefGoogle Scholar
  6. 6.
    I. Siemers, R. Blatt, T. Sauter, W. Neuhauser, Phys. Rev. A 38, 38 (1988)CrossRefGoogle Scholar
  7. 7.
    Y.S. Nam, D.K. Weiss, R. Blümel, Phys. Lett. A 381, 3477 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    S. Gronert, J. Am. Soc. Mass Spectrom. 9, 845 (1998)CrossRefGoogle Scholar
  9. 9.
    W.A. Donald, G.N. Khairallah, R.A.J. O'Hair, J. Am. Soc. Mass Spectrom. 24, 811 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    D.E. Goeringer, S.A. McLuckey, J. Chem. Phys. 104, 2214 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    X. Fabian, F. Mauger, G. Quéméner, Ph. Velten, G. Ban, C. Couratin, P. Delahaye, D. Durand, B. Fabre, P. Finlay et al., Hyperfine Interact. 235, 87 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    F.G. Major, H.G. Dehmelt, Phys. Rev. 170, 91 (1968)ADSCrossRefGoogle Scholar
  13. 13.
    E. Liénard, G. Ban, C. Couratin, P. Delahaye, D. Durand et al., Hyperfine Interact. 236, 1 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    P. Delahaye, to be published in Hyperfine InteractGoogle Scholar
  15. 15.
    P. Delahaye, G. Ban, M. Benali, D. Durand, X. Fabian, X. Fléchard, M. Herbane, E. Liénard, A. Mery, Y. Merrer, G. Quemener, B.M. Retailleau, D. Rodriguez, J.C. Thomas, P. Ujic, The open LPC Paul trap for precision measurement in beta decay, to be published in Eur. Phys. J. A, arXiv:1810.09246 [physics.ins-det]Google Scholar
  16. 16.
    R.E. March, J.F.J. Todd, Quadrupole Ion Trap Mass Spectrometry, in Chemical Analysis, a series of monographs on analytical chemistry and its applications, edited by J.D. Winefordner (Wiley, 2005)Google Scholar
  17. 17.
    R. Alheit, S. Kleineidam, F. Vedel, M. Vedel, G. Werth, Int. J. Mass Spectrom. Ion Proc. 154, 155 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    L.A. Viehland, E.A. Mason, At. Nucl. Data Tables 60, 37 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    T. Kim, Buffer gas cooling of ions in an RF ion guide: a study of the cooling process and cooled beam properties, PhD Thesis, McGill University, Montreal (1997)Google Scholar
  20. 20.
    S. Schwarz, Nucl. Instrum. Methods A 566, 233 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    G. Ban, G. Darius, D. Durand, X. Fléchard, M. Herbane, M. Labalme, E. Liénard, F. Mauger, O. Naviliat-Cuncic, C. Guénault et al., Nucl. Instrum. Methods A 518, 712 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    A. Kellerbauer, T. Kim, R.B. Moore, P. Varfalvy, Nucl. Instrum. Methods A 469, 276 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    R.G. DeVoe, Phys. Rev. Lett. 102, 063001 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Wolfram Research, Inc., Mathematica, Version 11.3 (2018)Google Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.GANIL, CEA/DSM-CNRS/IN2P3CaenFrance

Personalised recommendations