Skip to main content
Log in

Cross section measurements of proton capture reactions on Mo isotopes relevant to the astrophysical p process

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Cross section measurements of (\(p, \gamma\)) reactions on the Mo isotopes have been performed at beam energies from 2 to 6.2 MeV that are relevant to the p-process. Partial cross sections and isomeric ratios were also determined for the 92Mo case. Astrophysical S factors as well as reaction rates were derived from the experimental cross sections. Statistical model calculations were performed using the latest version (1.9) of the statistical model code TALYS and were compared with the new data. An overall good agreement between theory and experiment was found. In addition, the effect of different combinations of the nuclear input parameters entering the stellar reaction-rate calculations was investigated. It was found that, for certain combinations of optical-model potentials, nuclear level densities and \(\gamma\)-ray strength functions, the nuclear uncertainties propagated through the Hauser-Feshbach calculations are less than a factor of 2 which is well below the average discrepancies of the calculated p-nuclei abundances and the observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Käppeler et al., Rev. Mod. Phys. 83, 157 (2011)

    Article  ADS  Google Scholar 

  2. M. Arnould, S. Goriely, K. Takahashi, Phys. Rep. 450, 97 (2007)

    Article  ADS  Google Scholar 

  3. T. Rauscher et al., Rep. Prog. Phys. 76, 066201 (2013)

    Article  ADS  Google Scholar 

  4. M. Arnould, S. Goriely, Phys. Rep. 384, 1 (2003)

    Article  ADS  Google Scholar 

  5. W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952)

    Article  ADS  Google Scholar 

  6. A. Spyrou et al., Phys. Rev. C 76, 015802 (2007)

    Article  ADS  Google Scholar 

  7. Sotirios V. Harissopulos, Eur. Phys. J. Plus 133, 332 (2018)

    Article  Google Scholar 

  8. S. Harissopulos et al., Phys. Rev. C 87, 025806 (2013)

    Article  ADS  Google Scholar 

  9. S. Harissopulos et al., Phys. Rev. C 64, 055801 (2001)

    Article  ADS  Google Scholar 

  10. S. Galanopoulos et al., Phys. Rev. C 67, 015801 (2003)

    Article  ADS  Google Scholar 

  11. A. Spyrou et al., Phys. Rev. C 77, 065801 (2008)

    Article  ADS  Google Scholar 

  12. S. Harissopulos et al., Phys. Rev. C 93, 025804 (2016)

    Article  ADS  Google Scholar 

  13. V. Foteinou et al., Phys. Rev. C 97, 035805 (2018)

    Article  ADS  Google Scholar 

  14. Yongqiang Wang, Michael Nastasi, Handbook of Modern Ion Beam Materials Analysis (Materials Research Society, Cambridge University Press, Cambridge, 2010)

  15. J.F. Ziegler, J.P. Biersack, Code SRIM Version (2003), full description given by J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985)

  16. IAEA Live Chart of Nuclides, Nuclear Structure and Decay Data based on the Evaluated Nuclear Structure Data File (ENSDF), https://www-nds.iaea.org/livechart/

  17. S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)

    Article  ADS  Google Scholar 

  18. C.E. Rolfs, W.S. Rodney, Cauldrons in the Cosmos (The University of Chicago Press, Chicago, 1988)

  19. C.E. Rolfs, Nucl. Phys. News 16, 9 (2006) private communication

    Article  Google Scholar 

  20. K.U. Kettner et al., J. Phys. G: Nucl. Part. Phys. 32, 489 (2006)

    Article  ADS  Google Scholar 

  21. P.E. Hodgson, E. Gadioli, E. Gadioli Erba, Introductory Nuclear Physics (Oxford University Press, New York, 1997)

  22. C.A. Bertulani, P. Danielewicz, Introduction to Nuclear Reactions (Institute of Physics Publishing, Bristol and Philadelphia, 2004)

  23. G.R. Satchler, Introduction to Nuclear Reactions (Oxford University Press, New York, 1990)

  24. P. Demetriou, S. Goriely, Nucl. Phys. A 695, 95 (2001)

    Article  ADS  Google Scholar 

  25. R. Capote et al., Nucl. Data Sheets 110, 3107 (2009)

    Article  ADS  Google Scholar 

  26. A.J. Koning, S. Hilaire, M.C. Duijvestijn, TALYS-1.0, in Proceedings of the International Conference on Nuclear Data for Science and Technology, Nice, France, (2007), edited by O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, S. Leray (EDP Sciences, Les Ulis, France, 2008) p. 211 available online at https://doi.org/10.1051/ndata:07767

  27. Nuclear-reaction code TALYS Version 1.9 (available online at http://www.talys.eu/home)

  28. L. McFadden, G.R. Satchler, Nucl. Phys. 84, 177 (1966)

    Article  Google Scholar 

  29. A.J. Koning, J.P. Delaroche, Nucl. Phys. A 713, 231 (2003)

    Article  ADS  Google Scholar 

  30. V. Avrigeanu, M. Avrigeanu, C. Mănăilescu, Phys. Rev. C 90, 044612 (2014)

    Article  ADS  Google Scholar 

  31. J. Kopecky, M. Uhl, Phys. Rev. C 41, 1941 (1990)

    Article  ADS  Google Scholar 

  32. E. Bauge, J.P. Delaroche, M. Girod, Phys. Rev. C 63, 024607 (2001)

    Article  ADS  Google Scholar 

  33. P. Demetriou, C. Grama, S. Goriely, Nucl. Phys. A 707, 253 (2002)

    Article  ADS  Google Scholar 

  34. S. Watanabe, Nucl. Phys. 8, 484 (1958)

    Article  Google Scholar 

  35. D.G. Madland, in Proceedings, Specialists Meeting on preequilibrium nuclear reactions, Semmering, Austria, 1988, edited by Brigitte Strohmaier (OECD Publications, Paris, 1988) p. 103

  36. M. Nolte, H. Machner, J. Bojowald, Phys. Rev. C 36, 1312 (1987)

    Article  ADS  Google Scholar 

  37. V. Avrigeanu, P.E. Hodgson, M. Avrigeanu, Phys. Rev. C 49, 2136 (1994)

    Article  ADS  Google Scholar 

  38. W. Dilg, W. Schantl, H. Vonach, M. Uhl, Nucl. Phys. A 217, 269 (1973)

    ADS  Google Scholar 

  39. M.K. Grossjean, H. Feldmeier, Nucl. Phys. A 444, 113 (1985)

    Article  ADS  Google Scholar 

  40. A.V. Ignatyuk, K.K. Istekov, G.N. Smirenkin, Sov. J. Nucl. Phys. 29, 450 (1979) Yad. Fiz. 29

    Google Scholar 

  41. A.V. Ignatyuk et al., Phys. Rev. C 47, 1504 (1993)

    Article  ADS  Google Scholar 

  42. S. Goriely, F. Tondeur, J. Pearson, At. Data Nucl. Data Tables 77, 311 (2001)

    Article  ADS  Google Scholar 

  43. S. Goriely, S. Hilaire, A.J. Koning, Phys. Rev. C 78, 064307 (2008)

    Article  ADS  Google Scholar 

  44. S. Hilaire et al., Phys. Rev. C 86, 064317 (2012)

    Article  ADS  Google Scholar 

  45. D.M. Brink, Nucl. Phys. 4, 215 (1957)

    Article  Google Scholar 

  46. P. Axel, Phys. Rev. 126, 671 (1962)

    Article  ADS  Google Scholar 

  47. E. Khan et al., Astropart. Phys. 23, 191 (2005)

    Article  ADS  Google Scholar 

  48. S. Goriely, E. Khan, M. Samyn, Nucl. Phys. A 739, 331 (2004)

    Article  ADS  Google Scholar 

  49. S. Goriely, Phys. Lett. B 436, 10 (1998)

    Article  ADS  Google Scholar 

  50. I. Daoutidis, S. Goriely, Phys. Rev. C 86, 034328 (2012)

    Article  ADS  Google Scholar 

  51. M. Martini et al., Phys. Rev. C 94, 014304 (2016)

    Article  ADS  Google Scholar 

  52. T. Sauter, F. Käppeler, Phys. Rev. C 55, 3127 (1997)

    Article  ADS  Google Scholar 

  53. J. Mayer et al., Phys. Rev. C 93, 045809 (2016)

    Article  ADS  Google Scholar 

  54. G. Gyürky et al., Nucl. Phys. A 922, 112 (2014)

    Article  ADS  Google Scholar 

  55. J. Hasper et al., J. Phys. Conf. Ser. 202, 012005 (2010)

    Article  Google Scholar 

  56. E.A. Skakun et al., Sov. J. Nucl. Phys. 46, 17 (1987) Yad. Fiz. 46

    Google Scholar 

  57. L.Ja. Arifov, in Proceedings, Conference in Nuclear Spectrpscopy and Nuclear Structure, Leningrad 1980 (AN SSSR, Moscow) p. 328

  58. P.J. Daly, B.M. Seppelt, P.F.D. Shaw, Nucl. Phys. A 119, 673 (1968)

    Article  ADS  Google Scholar 

  59. Y. Xu et al., Astron. Astrophys. 549, A106 (2013) http://www.astro.ulb.ac.be/bruslib/

    Article  Google Scholar 

  60. R.H. Cyburt et al., Astrophys. J. Suppl. Ser. 189, 240 (2010) https://groups.nscl.msu.edu/jina/reaclib/db/index.php

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Harissopulos.

Additional information

Communicated by P. Woods

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: No data deposited elsewhere.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foteinou, V., Axiotis, M., Harissopulos, S. et al. Cross section measurements of proton capture reactions on Mo isotopes relevant to the astrophysical p process. Eur. Phys. J. A 55, 67 (2019). https://doi.org/10.1140/epja/i2019-12738-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12738-x

Navigation