Skip to main content
Log in

Conventional and hybrid Bc mesons in an extended potential model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Using our analytical expressions that well model the lattice simulations of the gluonic excitations, we use the extended quark potential model to study the effects of orbital and radial excitations on the masses and sizes of conventional and hybrid \( B_c\) mesons. A non relativistic formalism is used to numerically calculate the wave functions using the shooting method; this also allows us to calculate the E1 , M1 radiative partial widths for conventional meson to meson and hybrid to hybrid transitions. We incorporate spin mixing and compare our calculated spectrum and decay widths with the available experimental \( B_c\) masses and the theoretically predicted spectra and decay widths by other groups. Our results can help consider both conventional and hybrid quantum numbers for \( B_c\) mesons as experimental results become available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.J. Juge, J. Kuti, C.J. Morningstar, Phys. Rev. Lett. 82, 4400 (1999)

    ADS  Google Scholar 

  2. L.A. Griffiths, C. Michael, P.E.L. Rakow, Phys. Lett. B 129, 351 (1983)

    ADS  Google Scholar 

  3. E. Braaten, C. Langmack, D.H. Smith, Phys. Rev. D 90, 014044 (2014)

    ADS  Google Scholar 

  4. E. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane, T.M. Yan, Phys. Rev. D 17, 3090 (1978) 21

    ADS  Google Scholar 

  5. T. Barnes, S. Godfrey, E.S. Swanson, Phys. Rev. D 73, 054026 (2005)

    ADS  Google Scholar 

  6. D. Horn, J. Mandula, Phys. Rev. D 17, 898 (1978)

    ADS  Google Scholar 

  7. Eric S. Swanson, Adam P. Szczepaniak, Phys. Rev. D 59, 014035 (1999)

    ADS  Google Scholar 

  8. N. Isgur, J. Paton, Phys. Rev. D 31, 2910 (1985)

    ADS  Google Scholar 

  9. N. Isgur, J.E. Paton, Phys. Lett. B 124, 247 (1983)

    ADS  Google Scholar 

  10. R.C. Giles, S.H.H. Tye, Phys. Rev. D 16, 1079 (1977)

    ADS  Google Scholar 

  11. N. Brambilla, W.K. Lai, J. Segovia, J.T. Castell, A. Vairo, Phys. Rev. D 99, 014017 (2019)

    ADS  Google Scholar 

  12. P. Hasenfratz, R.R. Horgan, J. Kuti, J.M. Richard, Phys. Lett. B 95, 299 (1980)

    ADS  Google Scholar 

  13. Philip R. Page, Eric S. Swanson, Adam P. Szczepaniak, Phys. Rev. D 59, 034016 (1999)

    ADS  Google Scholar 

  14. Peng Guo, Adam P. Szczepaniak, Giuseppe Galata, Andrea Vassallo, Elena Santopinto, Phys. Rev. D 77, 056005 (2008)

    ADS  Google Scholar 

  15. Peng Guo, Adam P. Szczepaniak, Giuseppe Galat, Andrea Vassallo, Elena Santopinto, Phys. Rev. D 78, 056003 (2008)

    ADS  Google Scholar 

  16. P. Lacock et al., Phys. Lett. B 401, 309 (1997)

    ADS  Google Scholar 

  17. SESAM Collaboration (P. Lacock, K. Schilling), Nucl. Phys. Proc. Suppl. 73, 261 (1999)

    ADS  Google Scholar 

  18. C. Bernard et al., Nucl. Phys. B Proc. Suppl. 73, 264 (1999)

    ADS  Google Scholar 

  19. Z.H. Mei, X.Q. Luo, Int. J. Mod. Phys. A 18, 5713 (2003)

    ADS  Google Scholar 

  20. J.N. Hedditch et al., Phys. Rev. D 73, 114507 (2005)

    ADS  Google Scholar 

  21. C.A. Meyer, E.S. Swanson, Prog. Part. Nucl. Phys. 82, 21 (2015)

    ADS  Google Scholar 

  22. N. Akbar, B. Masud, S. Noor, Eur. Phys. J. A 47, 124 (2011) 50

    ADS  Google Scholar 

  23. K.J. Juge, J. Kuti, C. Morningstar, AIP Conf. Proc. 688, 193 (2003)

    ADS  Google Scholar 

  24. A. Sultan, N. Akbar, B. Masud, F. Akram, Phys. Rev. D 90, 054001 (2014)

    ADS  Google Scholar 

  25. N. Akbar, M. Atif Sultan, B. Masud, F. Akram, Phys. Rev. D 95, 074018 (2017)

    ADS  Google Scholar 

  26. E.J. Eichten, C. Quigg, Phys. Rev. D 49, 5845 (1994)

    ADS  Google Scholar 

  27. S.N. Gupta, J.M. Johnson, Phys. Rev. D 53, 312 (1996)

    ADS  Google Scholar 

  28. L.P. Fulcher, Phys. Rev. D 60, 074006 (1999)

    ADS  Google Scholar 

  29. D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 67, 014027 (2003)

    ADS  Google Scholar 

  30. S. Godfrey, Phys. Rev. D 70, 054017 (2004)

    ADS  Google Scholar 

  31. M. Abu-Shady, APS Physics 2, 16 (2016)

    Google Scholar 

  32. J. Zeng, J.W. Van Orden, W. Roberts, Phys. Rev. D 53, 5229 (1995)

    ADS  Google Scholar 

  33. S.S. Gershtein, V.V. Kiselev, A.K. Likhoded, A.V. Tkabladze, Phys. Rev. D 51, 3613 (1995)

    ADS  Google Scholar 

  34. W. Chen, T.G. Steele, Shi-Lin Zhu, J. Phys. G: Nucl. Part. Phys. 41, 025003 (2014)

    ADS  Google Scholar 

  35. E. Bagan, H.G. Dosch, P. Gosdzinsky, S. Narison, J.M. Richard, Z. Phys. C 64, 57 (1994)

    ADS  Google Scholar 

  36. I.F. Allison, C.T.H. Davies, A. Gray, A.S. Kronfeld, P.B. Mackenzie, J.N. Simone, Nucl. Phys. B Proc. Suppl. 140, 440 (2005)

    Google Scholar 

  37. C.T.H. Davies, K. Hornbostel, G.P. Lepage, A.J. Lidsey, J. Shigemitsu, J.H. Sloan, Phys. Lett. B 382, 131 (1996)

    ADS  Google Scholar 

  38. G.M. de Divitiis, M. Guagnelli, F. Palombi, R. Petronzio, N. Tantalo, Nucl. Phys. B 675, 309 (2003)

    ADS  Google Scholar 

  39. S. Godfrey, N. Isgur, Phys. Rev. D 32, 189 (1985)

    ADS  Google Scholar 

  40. W. Celmaster, H. Georgi, M. Machacek, Phys. Rev. D 17, 879 (1978)

    ADS  Google Scholar 

  41. M.N. Anwar, J. Ferretti, E. Santopinto, Phys. Rev. D 98, 094015 (2018)

    ADS  Google Scholar 

  42. K.J. Juge, J. Kuti, C.J. Morningstar, Nucl. Phys. Proc. Suppl. 63, 326 (1998)

    ADS  Google Scholar 

  43. Belle Collaboration (Kazuo Abe et al.), Phys. Rev. D 69, 112002 (2004)

    Google Scholar 

  44. S. Godfrey, K. Moats, E.S. Swanson, Phys. Rev. D 94, 054025 (2016)

    ADS  Google Scholar 

  45. A.K. Rai, P.C. Vinodkumar, Pramana 66, 953 (2006)

    ADS  Google Scholar 

  46. A. Abd El-Hady, M.A.K. Lodhi, J.P. Vary, Phys. Rev. D 59, 094001 (1999)

    ADS  Google Scholar 

  47. Particle Data Group (M. Tanabashi et al.), Phys. Rev. D 98, 030001 (2018)

    Google Scholar 

  48. N. Mathur, M. Padmanath, S. Mondal, Phys. Rev. Lett. 121, 202002 (2018)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nosheen Akbar.

Additional information

Communicated by U.-G. Meißner

Data Availability Statement

This manuscript has associated data in a data repository. [Authors' comment: All data generated during this study are contained in this published article.]

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbar, N., Akram, F., Masud, B. et al. Conventional and hybrid Bc mesons in an extended potential model. Eur. Phys. J. A 55, 82 (2019). https://doi.org/10.1140/epja/i2019-12735-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12735-1

Navigation