Skip to main content
Log in

Improved 242Pu(n,\( \gamma\)) thermal cross section combining activation and prompt gamma analysis

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

A good knowledge of the radiative capture cross section of 242Pu is required for innovative nuclear reactor studies, especially for MoX fuel reactors. However, the experimental data available show discrepancies in the energy regions of interest: the thermal point and the keV region. Previous experimental results of the thermal cross section deviate from each other by 20% and these discrepancies are reflected also in the evaluated libraries, each of them giving more credit to different data sets. A recent measurement by Genreith et al. did not succeed to solve the existing discrepancy due to the large uncertainties and correction factors in the analysis. This work presents a new measurement of the thermal capture cross section of 242Pu carried out in the Budapest Research Reactor using the same thin targets of a previous measurement at n_TOF-EAR1, each containing 30mg of 99.995% pure 242Pu . The combined analysis of the full prompt \( \gamma\)-ray spectrum and the 243Pu decay has led to three compatible values for the thermal cross section. Their average value, 18.9(9)b, has an improved accuracy compared to recent measurements. Leaving aside the activation value of Genreith using an outdated intensity value for the 84 keV decay line of 243Pu , our average result is in very good agreement with the JEFF-3.2 evaluation and all the previous measurements, with the exception of the highest value 22.5(11)b reported by Marie et al., which has a strong influence in the ENDF evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Atomic Energy Agency, Status and advances in Mox fuel technology, IAEA Technical Reports Series 415 (2003)

  2. N. Colonna et al., Energy Environ. Sci. 3, 1910 (2010)

    Article  Google Scholar 

  3. M. Salvatores, R. Jacqmin, Uncertainty and Target Accuracy Assessment for Innovative System Using Recent Covariance Data Evaluations (NEA/WPEC-26, 2008)

  4. NEA Nuclear Data High Priority Request List, http://www.oecd-nea.org/dbdata/hprl/

  5. C. Guerrero et al., Eur. Phys. J. A 49, 27 (2013)

    Article  ADS  Google Scholar 

  6. J. Lerendegui-Marco, C. Guerrero et al., Phys. Rev. C 97, 024605 (2018)

    Article  ADS  Google Scholar 

  7. J. Lerendegui-Marco, C. Guerrero, in preparation

  8. V. Semkova, N. Otuka, M. Mikhailiukova, B. Pritychenko, O. Cabellos, EPJ Web of Conferences 146, 07003 (2017)

    Article  Google Scholar 

  9. F. Marie et al., Nucl. Instrum. Methods Phys. Res. A 556, 547 (2006)

    Article  ADS  Google Scholar 

  10. J.P. Butler et al., Can. J. Phys. 35, 147 (1957)

    Article  ADS  Google Scholar 

  11. R.W. Durham, F. Molson, Can. J. Phys. 48, 716 (1970)

    Article  ADS  Google Scholar 

  12. P.J. Bendt, E.T. Jurney, Los Alamos Scientific Lab. Reports, 7853 (1979)

  13. Genreith et al., J. Radioanal. Nucl. Chem. 296, 699 (2013)

    Article  Google Scholar 

  14. M. Rossbach et al., J. Radioanal. Nucl. Chem. 304, 1359 (2015)

    Article  Google Scholar 

  15. R.F. Casten, W.R. Kane, J.R. Erskine, A.M. Friedman, D.S. Gale, Phys. Rev. C 14, 912 (1976)

    Article  ADS  Google Scholar 

  16. Y. Akovali et al., Nucl. Data Sheets 103, 515 (2004)

    Article  ADS  Google Scholar 

  17. Zs. Révay, T. Belgya, Zs. Kasztovszky, J.L. Weil, G.L. Molnr, Nucl. Instrum. Methods B 213, 385 (2004)

    Article  ADS  Google Scholar 

  18. L. Szentmiklósi et al., J. Radioanal. Nucl. Chem. 286, 501 (2010)

    Article  Google Scholar 

  19. T. Belgya, Phys. Proc. 31, 99 (2012)

    Article  ADS  Google Scholar 

  20. J. Füzi, Nucl. Instrum. Methods A 586, 41 (2008)

    Article  ADS  Google Scholar 

  21. CHANDA: solving CHAllenges in Nuclear DAta, Project funded by FP7-EURATOM-FISSION, EC (Grant No. 605203)

  22. C. Guerrero, J. Lerendegui-Marco, K. Eberhardt et al., Nucl. Instrum. Methods A 925, 87 (2019)

    Article  ADS  Google Scholar 

  23. L. Szentmiklósi, T. Belgya, M. Boglarka, Z. Kis, J. Radioanal. Nucl. Chem. 300, 553 (2014)

    Article  Google Scholar 

  24. Z. Kis, P. Völgyesi, Z. Szabó, J. Radioanal. Nucl. Chem. 298, 2029 (2013)

    Article  Google Scholar 

  25. P.R. Fields et al., Nucl. Phys. A 103, 460 (1971)

    Article  ADS  Google Scholar 

  26. P. Leconte, in International Conference on Nuclear Data for Science and Technology, (EDP Sciences, 2007) pp. 521--524

  27. The JEFF-3.1.1 Nuclear Data Library, JEFF Report 22, OECD/NEA Data Bank (2009)

  28. M.B. Chadwick et al., Nucl. Data Sheets 112, 2887 (2011)

    Article  ADS  Google Scholar 

  29. J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006)

    Article  ADS  Google Scholar 

  30. J. Allison et al., Nucl. Instrum. Methods A 835, 186 (2016)

    Article  ADS  Google Scholar 

  31. National Nuclear Data Center, Brookhaven National Laboratory, Evaluated Nuclear Structure Data File

  32. Database of prompt gamma rays from slow neutron capture for elemental analysis, (International Atomic Energy Agency, Vienna, 2006)

  33. C.D. Nesaraja, E.A. McCutchan, Nucl. Data Sheets 121, 695 (2014)

    Article  ADS  Google Scholar 

  34. M. Guttormsen, T.S. Tveter, L. Bergholt, F. lngebretsen, J. Rekstad, Nucl. Instrum. Methods A 374, 37 (1996)

    Article  Google Scholar 

  35. T. Belgya, in Proceedings of the European Research Infrastructures for Nuclear Data Applications (ERINDA) workshop, CERN, Geneva, CERN-Proceedings-2014-002 (CERN, 2014) pp. 119--126

  36. T. Belgya et al., J. Radioanal. Nucl. Chem. 276, 609 (2008)

    Article  Google Scholar 

  37. T. Kibédi, T.W. Burrows, M.B. Trzhaskovskaya, P.M. Davidson, C.W. Nestor, Nucl. Instrum. Methods A 589, 202 (2008)

    Article  ADS  Google Scholar 

  38. T. Laplace et al., Phys. Rev. C 93, 014323 (2016)

    Article  ADS  Google Scholar 

  39. K. Shibata et al., J. Nucl. Sci. Technol. 48, 1 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Lerendegui-Marco.

Additional information

Communicated by A. Obertelli

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lerendegui-Marco, J., Guerrero, C., Belgya, T. et al. Improved 242Pu(n,\( \gamma\)) thermal cross section combining activation and prompt gamma analysis. Eur. Phys. J. A 55, 63 (2019). https://doi.org/10.1140/epja/i2019-12730-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12730-6

Navigation