Advertisement

Reactions along the astrophysical s-process path and prospects for neutron radiotherapy with the Liquid-Lithium Target (LiLiT) at the Soreq Applied Research Accelerator Facility (SARAF)

  • Michael PaulEmail author
  • Moshe Tessler
  • Moshe Friedman
  • Shlomi Halfon
  • Tala Palchan
  • Leonid Weissman
  • Alexander Arenshtam
  • Dan Berkovits
  • Yosef Eisen
  • Ilan Eliahu
  • Gitai Feinberg
  • Daniel Kijel
  • Arik Kreisel
  • Israel Mardor
  • Guy Shimel
  • Asher Shor
  • Ido Silverman
Review

Abstract.

Neutrons play a dominant role in the stellar nucleosynthesis of heavy elements and the quest for accurate experimental determinations of neutron-induced reaction cross sections becomes more stringent with the refinement of nuclear and astrophysical models. We review here an experimental nuclear-astrophysics program using a high-intensity neutron source based on the 7Li(p, n)7Be reaction with a Liquid-Lithium Target (LiLiT) at the Soreq Applied Research Accelerator Facility (SARAF) Phase I. The quasi-Maxwellian neutron spectrum with effective thermal energy \( kT \approx 30\) keV, characteristic of the thick-target 7Li(p, n) yield at proton energy \( E_p \approx 1.92\) MeV close to its neutron threshold, is well suited for laboratory measurements of neutron capture reactions along the astrophysical s -process path. The high-intensity proton beam (in the mA range) of SARAF and the high power (few kW) dissipation of LiLiT result in the most intense source of neutrons available today at stellar-like energies. The principle, design and properties of the LiLiT device and recent measurements of Maxwellian Averaged Cross Sections (MACS) based on activation of targets of astrophysical interest are described. Decay counting or atom counting methods (accelerator mass spectrometry, atom-trap trace analysis) are used for the detection of short-lived or long-lived activation products, respectively. In a different realm of applications, the 7Li(p, n) reaction is a leading candidate as an accelerator-based neutron source for Boron Neutron Capture Therapy (BNCT). The high neutron yield achievable from a liquid-lithium target, its sustainability of operation under kW-power incident beams and the recent availability of small-size high-intensity accelerators are compatible with a hospital-based clinical facility. An effort towards the characterization and realization of a liquid-lithium target for BNCT is reviewed. Perspectives of pending and future developments towards SARAF Phase II, based on a 40MeV, 5mA CW proton/deuteron superconducting linear accelerator, are summarized.

References

  1. 1.
    A.G.W. Cameron, Stellar Evolution, Nuclear Astrophysics, and Nucleogenesis (Dover Publications Inc., Mineola, New York, 2013) https://doi.org/www.osti.gov/servlets/purl/4709881
  2. 2.
    E.M. Burbidge et al., Rev. Mod. Phys. 29, 547 (1957)ADSGoogle Scholar
  3. 3.
    F. Käppeler, Prog. Part. Nucl. Phys. 43, 419 (1999)ADSGoogle Scholar
  4. 4.
    F. Käppeler et al., Rev. Mod. Phys. 83, 157 (2011)ADSGoogle Scholar
  5. 5.
    F.-K. Thielemann et al., Prog. Part. Nucl. Phys. 66, 346 (2011)ADSGoogle Scholar
  6. 6.
    J.M. Lattimer, D.N. Schramm, Astrophys. J. 210, 549 (1976)ADSGoogle Scholar
  7. 7.
    D. Eichler et al., Nature 340, 126 (1989)ADSGoogle Scholar
  8. 8.
    B.P. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017)ADSGoogle Scholar
  9. 9.
    E. Pian et al., Nature 551, 67 (2017)ADSGoogle Scholar
  10. 10.
    N.R. Tanvir et al., Nature 500, 547 (2013)ADSGoogle Scholar
  11. 11.
    H. Beer, F. Käppeler, Phys. Rev. C 21, 534 (1980)ADSGoogle Scholar
  12. 12.
    W. Ratynski, F. Käppeler, Phys. Rev. C 37, 595 (1988)ADSGoogle Scholar
  13. 13.
    C. Raiteri et al., Astrophys. J. 419, 207 (1993)ADSGoogle Scholar
  14. 14.
    M. Limongi, O. Straniero, A. Chieffi, Astrophys. J. Suppl. 129, 625 (2000)ADSGoogle Scholar
  15. 15.
    M. Heil et al., Phys. Rev. C 77, 015808 (2008)ADSGoogle Scholar
  16. 16.
    P.W. Merrill, Astrophys. J. 116, 21 (1952)ADSGoogle Scholar
  17. 17.
    P.W. Merrill, Science 115, 479 (1952)Google Scholar
  18. 18.
    W. Wang et al., Astron. Astrophys. 469, 1005 (2007)ADSGoogle Scholar
  19. 19.
    K. Knie et al., Phys. Rev. Lett. 93, 171103 (2004)ADSGoogle Scholar
  20. 20.
    A. Wallner et al., Nature 532, 69 (2016)ADSGoogle Scholar
  21. 21.
    F. Käppeler, F.K. Thielemann, M. Wiescher, Annu. Rev. Nucl. Part. Sci. 48, 175 (1998)ADSGoogle Scholar
  22. 22.
    H. Nassar et al., Phys. Rev. Lett. 94, 092504 (2005)ADSGoogle Scholar
  23. 23.
    I. Dillmann et al., Nucl. Instrum. Methods Phys. Res. B 268, 1283 (2010)ADSGoogle Scholar
  24. 24.
    C. Massimi et al., Phys. Rev. C 81, 044616 (2010)ADSGoogle Scholar
  25. 25.
    C. Massimi et al., Eur. Phys. J. A 50, 124 (2014)ADSGoogle Scholar
  26. 26.
    A.O. Hanson, D.L. Benedict, Phys. Rev. 65, 33 (1944)ADSGoogle Scholar
  27. 27.
    Richard Taschek, Arthur Hemmendinger, Phys. Rev. 74, 373 (1948)ADSGoogle Scholar
  28. 28.
    H.W. Newson et al., Phys. Rev. 108, 1294 (1957)ADSGoogle Scholar
  29. 29.
    A. Kreisel, Phase-I Proton/Deutron Linac Beam Operation Status, in Proceedings of LINAC 2014 (Geneva, Switzerland, 2014) WEIOB02, 770, https://doi.org/accelconf.web.cern.ch/AccelConf/LINAC2014/papers/weiob02.pdf
  30. 30.
    Israel Mardor et al., Eur. Phys. J. A 54, 91 (2018)ADSGoogle Scholar
  31. 31.
    James F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010)ADSGoogle Scholar
  32. 32.
    S. Halfon et al., Rev. Sci. Instrum. 84, 123507 (2013)ADSGoogle Scholar
  33. 33.
    Claude B. Reed et al., Nucl. Phys. A 746, 161 (2004)ADSGoogle Scholar
  34. 34.
    P. Grand, A.N. Goland, Nucl. Instrum. Methods 145, 49 (1977)ADSGoogle Scholar
  35. 35.
    Yu.M. Gelfgat, J. Priede, Magnetohydrodynamics 31, 188 (1995)Google Scholar
  36. 36.
    S. Halfon, Study and development of a high intensity neutron source based on a liquid lithium target towards application to boron neutron capture therapy, PhD Thesis, Hebrew University of Jerusalem (2014)Google Scholar
  37. 37.
    S. Halfon et al., Rev. Sci. Instrum. 85, 056105 (2014)ADSGoogle Scholar
  38. 38.
    M. Tessler et al., Phys. Lett. B 751, 418 (2015)ADSGoogle Scholar
  39. 39.
    Y. Momozaki, Thermal Design Analysis for Liquid Metal Windowless Targets, in Third High-Power Targetry Workshop, Bad Zurzach, Switzerland, 2007 (2008) https://doi.org/puhep1.princeton.edu/mumu/target/Reed/reed_102009.pdf
  40. 40.
    Jafar Safarian, Thorvald A. Engh, Metall. Mater Trans. A 44, 747 (2013)Google Scholar
  41. 41.
    T. Hua, Design and analysis of the lithium target system for the International Fusion Materials Irradiation Facility (IFMIF), in Proceedings of the 16th International Symposium on Fusion Engineering, Vol. 2 (IEEE, 1995) pp. 1242--1246Google Scholar
  42. 42.
    L. Danon, Thermal Imaging of the Liquid-Lithium Target (LiLiT) used for Neutron Production, Masters Thesis, unpublishedGoogle Scholar
  43. 43.
    A. Kreisel, Calculations of the SARAF beam distribution on the LiLit Nozzle, private communicationGoogle Scholar
  44. 44.
    M. Friedman et al., Nucl. Instrum. Methods Phys. Res. Sect. A 698, 117 (2013)ADSGoogle Scholar
  45. 45.
    S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. Sect. A 506, 250 (2003)ADSGoogle Scholar
  46. 46.
    Horst Liskien, Arno Paulsen, At. Data Nucl. Data Tables 15, 57 (1975)Google Scholar
  47. 47.
    J.H. Gibbons, R.L. Macklin, Phys. Rev. 114, 571 (1959)ADSGoogle Scholar
  48. 48.
    C.L. Lee, X.-L. Zhou, Nucl. Instrum. Methods Phys. Res. Sec. B 152, 1 (1999)ADSGoogle Scholar
  49. 49.
    R.L. Macklin, J.H. Gibbons, Phys. Rev. 109, 105 (1958)ADSGoogle Scholar
  50. 50.
    L. Damone et al., Phys. Rev. Lett. 121, 042701 (2018)ADSGoogle Scholar
  51. 51.
    M. Friedman, M. Paul, M. Tessler, in preparationGoogle Scholar
  52. 52.
    G. Feinberg et al., Phys. Rev. C 85, 055810 (2012)ADSGoogle Scholar
  53. 53.
    C. Lederer et al., Phys. Rev. C 85, 055809 (2012)ADSGoogle Scholar
  54. 54.
    M.B. Chadwick et al., Nucl. Data Sheets 112, 2887 (2011)ADSGoogle Scholar
  55. 55.
    R.L. Macklin, J.H. Gibbons, Phys. Rev. 159, 1007 (1967)ADSGoogle Scholar
  56. 56.
    J.W. Boldeman et al., Nucl. Phys. A 269, 31 (1976)ADSGoogle Scholar
  57. 57.
    A. de L. Musgrove, Neutron Physics and Nuclear Data for Reactors and Other Applied Purposes (OECD, Paris, 1978) p. 449Google Scholar
  58. 58.
    J. Wyrick, W. Poenitz, Technical report ANL-83-4, Argonne National Laboratory (1983)Google Scholar
  59. 59.
    K.A. Toukan, F. Käppeler, Astrophys. J. 348, 357 (1990)ADSGoogle Scholar
  60. 60.
    G. Tagliente et al., Phys. Rev. C 84, 015801 (2011)ADSGoogle Scholar
  61. 61.
    B. Allen, J. Gibbons, R. Macklin, Adv. Nucl. Phys. 4, 205 (1971)Google Scholar
  62. 62.
    G. Tagliente et al., Phys. Rev. C 84, 055802 (2011)ADSGoogle Scholar
  63. 63.
    I. Dillmann, KADoNiS v0.3 - The third update of the Karlsruhe Astrophysical Database of Nucleosynthesis in Stars, in EFNUDAT Fast Neutrons, scientific workshop on neutron measurements, theory and applications (JRC-IRMM, Geel, Belgium, 2009) https://doi.org/www.kadonis.org/
  64. 64.
    Günther K. Nicolussi et al., Science 277, 1281 (1997)ADSGoogle Scholar
  65. 65.
    E. Zinner, Annu. Rev. Earth Planet. Sci. 26, 147 (1998)ADSGoogle Scholar
  66. 66.
    M. Lugaro et al., Astrophys. J. 780, 95 (2014)ADSGoogle Scholar
  67. 67.
    M. Lugaro et al., Astrophys. J. 593, 486 (2003)ADSGoogle Scholar
  68. 68.
    P. Neyskens et al., Nature 517, 174 (2015)ADSGoogle Scholar
  69. 69.
    A.M. Davis, in Nuclei in the Cosmos V, edited by N. Prantzos, H. Harissopulos (Editions Frontieres, Paris, 1998) p. 563Google Scholar
  70. 70.
    R.J. Stancliffe et al., Nucl. Phys. A 758, 569 (2005)ADSGoogle Scholar
  71. 71.
    W.R. Dixon, Nucl. Instrum. Methods 103, 415 (1972)ADSGoogle Scholar
  72. 72.
    R.E. MacFarlane, ENDF uncertainties for neutron capture on Au (2012) https://doi.org/t2.lanl.gov/nis/data/endf/covVII.1/au/197pc33
  73. 73.
    C. Lederer et al., Phys. Rev. C 83, 034608 (2011)ADSGoogle Scholar
  74. 74.
    H. Xiaolong, Nucl. Data Sheets 110, 2533 (2009)ADSGoogle Scholar
  75. 75.
    N. Nica, Nucl. Data Sheets 111, 525 (2010)ADSGoogle Scholar
  76. 76.
    D. Zahnow et al., Z. Phys. A 351, 229 (1995)ADSGoogle Scholar
  77. 77.
    G.P. Antropov et al., Izv. Ross. Akad. Nauk, Ser. Fiz. 33, 700 (1969)Google Scholar
  78. 78.
    D. Brajnik et al., Phys. Rev. C 13, 1852 (1976)ADSGoogle Scholar
  79. 79.
    L. Weissman et al., Phys. Rev. C 96, 015802 (2017)ADSGoogle Scholar
  80. 80.
    A. Shor et al., Phys. Rev. C 96, 055805 (2017)Google Scholar
  81. 81.
    S. Pavetich et al., Phys. Rev. C 99, 015801 (2019)ADSGoogle Scholar
  82. 82.
    M. Tessler et al., Phys. Rev. Lett. 121, 112701 (2018)ADSGoogle Scholar
  83. 83.
    M. Paul, Nucleosynthesis Reactions with the High-Intensity SARAF-LiLiT Neutron Source, in Proceedings of the 26th International Nuclear Physics Conference, Adelaide, Australia (SISSA Medialab, 2016) https://doi.org/pos.sissa.it/281/139/pdf
  84. 84.
    Walter Kutschera, Adv. Phys. X 1, 570 (2016)Google Scholar
  85. 85.
    M. Paul et al., Phys. Lett. B 94, 303 (1980)ADSGoogle Scholar
  86. 86.
    H. Nassar et al., Phys. Rev. Lett. 96, 041102 (2006)ADSGoogle Scholar
  87. 87.
    A. Wallner, Nucl. Instrum. Methods Phys. Res. B 268, 1277 (2010)ADSGoogle Scholar
  88. 88.
    C.Y. Chen et al., Science 286, 1139 (1999)Google Scholar
  89. 89.
    P. Collon et al., Nucl. Instrum. Methods Phys. Res. Sect. B 123, 122 (1997)ADSGoogle Scholar
  90. 90.
    P. Collon et al., Earth Planet. Sci. Lett. 182, 103 (2000)ADSGoogle Scholar
  91. 91.
    C.F. von Weizsäcker, Physik. Zeits 38, 623 (1937)Google Scholar
  92. 92.
    Edward Anders, Tobias Owen, Science 198, 453 (1977)ADSGoogle Scholar
  93. 93.
    Katharina Lodders, Astrophys. J. 591, 1220 (2003)Google Scholar
  94. 94.
    R.D. Hoffman et al., Astrophys. J. 521, 735 (1999)ADSGoogle Scholar
  95. 95.
    R. Reifarth, K. Schwarz, F. Kaeppeler, Astrophys. J. 528, 573 (2000)ADSGoogle Scholar
  96. 96.
    G. Rupp et al., Nucl. Instrum. Methods Phys. Res. A 608, 152 (2009)ADSGoogle Scholar
  97. 97.
    G.E. McMurtrie, D.P. Crawford, Phys. Rev. 77, 840 (1950)ADSGoogle Scholar
  98. 98.
    P. Wille, Atomkernergie 13, 383 (1968)Google Scholar
  99. 99.
    Seymour Katcoff, Phys. Rev. 87, 886 (1952)ADSGoogle Scholar
  100. 100.
    M. Paul et al., Nucl. Instrum. Methods Phys. Res. A 277, 418 (1989)ADSGoogle Scholar
  101. 101.
    Raymond Davis, Prog. Part. Nucl. Phys. 32, 13 (1994)ADSGoogle Scholar
  102. 102.
    H.H. Loosli et al., Nucl. Instrum. Methods Phys. Res. B 17, 402 (1986)ADSGoogle Scholar
  103. 103.
    Robin A. Riedmann, Roland Purtschert, Environ. Sci. Technol. 45, 8656 (2011)ADSGoogle Scholar
  104. 104.
    Philippe Collon, Walter Kutschera, Zheng-Tian Lu, Annu. Rev. Nucl. Part. Sci. 54, 39 (2004)ADSGoogle Scholar
  105. 105.
    P. Collon et al., Nucl. Instrum. Methods Phys. Res. B 283, 77 (2012)ADSGoogle Scholar
  106. 106.
    M. Paul, Physics Division Annual Report, ANL-97/14, 79 (1997) https://doi.org/inldigitallibrary.inl.gov/Reports/ANL-97-14.pdf
  107. 107.
    A.J. Koning, D. Rochman, Nucl. Data Sheets 113, 2841 (2012)ADSGoogle Scholar
  108. 108.
    A.J. Koning, TENDL-2015: TALYS-based evaluated nuclear data library, https://doi.org/tendl.web.psi.ch/tendl_2015/tendl2015.html
  109. 109.
    A.J. Koning, TENDL-2017: TALYS-based evaluated nuclear data library, https://doi.org/tendl.web.psi.ch/tendl_2017/tendl2017.html
  110. 110.
    S. Hilaire, A. Koning, S. Goriely, TALYS-1.8, A Nuclear Reaction Program, NRG-1755 ZG Petten, The Netherlands (2015) https://doi.org/www.talys.eu/home/
  111. 111.
    S.E. Mughabghab, Atlas of Neutron Resonances, data available online: https://doi.org/www-nds.iaea.org/relnsd/NdsEnsdf/neutroncs.html (Elsevier Science, 2006)
  112. 112.
    S.E. Woosley et al., At. Data Nucl. Data Tables 22, 371 (1978)ADSGoogle Scholar
  113. 113.
    H. Gruppelaar, H. van der Kamp, Nuclear Data for Science and Technology, edited by K. Böckhoff (Reidel, Dordrecht, Antwerp, 1983) p. 643Google Scholar
  114. 114.
    Thomas Rauscher, Friedrich-Karl Thielemann, At. Data Nucl. Data Tables 75, 1 (2000)ADSGoogle Scholar
  115. 115.
    S. Goriely, Hauser-Feshbach rates for neutron capture reactions (version 8/29/2005) https://doi.org/www-astro.ulb.ac.be/Html/hfr.html
  116. 116.
    JEFF-3.2 Library, Joint Evaluated Fission and Fusion (2014) https://doi.org/www.oecd-nea.org/dbforms/data/eva/evatapes/jeff_32/
  117. 117.
    ROSFOND-2010 Library, Institute of Physics and Power Engineering (2010) https://doi.org/www.ippe.ru/podr/abbn/libr/rosfond.php
  118. 118.
  119. 119.
    E. Anders, N. Grevesse, Geochim. Cosmochim. Acta 53, 197 (1989)ADSGoogle Scholar
  120. 120.
    L. Alaerts et al., Geochim. Cosmochim. Acta 44, 189 (1980)ADSGoogle Scholar
  121. 121.
    U. Ott et al., Nature 332, 700 (1988)ADSGoogle Scholar
  122. 122.
    H. Beer, R.L. Macklin, Astrophys. J. 339, 962 (1989)ADSGoogle Scholar
  123. 123.
    W. Jiang et al., Geochim. Cosmochim. Acta 91, 1 (2012)ADSGoogle Scholar
  124. 124.
    J.C. Zappala et al., Chem. Geol. 453, 66 (2017)ADSGoogle Scholar
  125. 125.
    G.L. Locher, Am. J. Roentgenol. 36, 1 (1936)Google Scholar
  126. 126.
    J. Chadwick, Proc. R. Soc. London A 136, 692 (1932)ADSGoogle Scholar
  127. 127.
    L.E. Farr, J.S. Robertson, E. Stickley, Proc. Natl. Acad. Sci. 40, 1087 (1954)ADSGoogle Scholar
  128. 128.
    Current status of neutron capture therapy, IAEA-TECDOC-1223 (IAEA, Vienna, 2001) https://doi.org/www-pub.iaea.org/MTCD/publications/PDF/te_1223_prn.pdf
  129. 129.
    Rolf F. Barth et al., Clin. Cancer Res. 11, 3987 (2005)Google Scholar
  130. 130.
    E. Bisceglie et al., Phys. Med. Biol. 45, 49 (2000)Google Scholar
  131. 131.
    O.E. Kononov, V.N. Kononov, N.A. Solov’ev, At. Energy 94, 417 (2003)Google Scholar
  132. 132.
    Kenichi Tanaka et al., Appl. Radiat. Isot. 67, 259 (2009)Google Scholar
  133. 133.
    V. Aleynik et al., Appl. Radiat. Isot. 69, 1635 (2011)Google Scholar
  134. 134.
    C. Willis, J. Lenz, D. Swenson, High power lithium target for accelerator based BNCT, in Proceedings of LINAC08, Victoria, BC, Canada (2008) https://doi.org/accelconf.web.cern.ch/AccelConf/LINAC08/papers/mop063.pdf
  135. 135.
    D.A. Allen, T.D. Beynon, Med. Phys. 27, 1113 (2000)Google Scholar
  136. 136.
    A.A. Burlon et al., Appl. Radiat. Isot. 61, 811 (2004)Google Scholar
  137. 137.
    S. Halfon et al., Appl. Radiat. Isot. 88, 238 (2014)Google Scholar
  138. 138.
    J.F. Briesmeister, MCNP- a general Monte Carlo N particles transport code system, LANL report LA-12626-M (1997)Google Scholar
  139. 139.
    J.T. Goorley, W.S. Kiger, R.G. Zamenhof, Med. Phys. 29, 145 (2002)Google Scholar
  140. 140.
    J.H. Hubbell, S. Seltzer, Table of x ray mass atomic attenuation coefficient and mass energy absorption coefficient 1keV to 20MeV for Elements $z=1$ to 98 and 48 additional substances of dosimetric interest, technical report NISTIR 5632 (National Institute of Standards and Technology, 1995) https://doi.org/www.nist.gov/pml/x-ray-mass-attenuation-coefficients
  141. 141.
    Y. Nakagawa et al., J. Neuro-Oncol. 62, 87 (2003)Google Scholar
  142. 142.
    P.J. Kueffer et al., Proc. Natl. Acad. Sci. 110, 6512 (2013)ADSGoogle Scholar
  143. 143.
    H. Kobayashi, Construction of a BNCT facility using an 8MeV high power proton linac in Tokai, in Proceedings of IPAC2012, New Orleans, Louisiana, USA (2012) https://doi.org/accelconf.web.cern.ch/accelconf/ipac2012/papers/thppr048.pdf
  144. 144.
    N. Smick, Hyperion Accelerator Technology for BNCT, in Accelerator-Based Neutron Production Workshop, Laboratori Nazionali di Legnaro, Padova, Italy, 2014 (2014) https://doi.org/agenda.infn.it/getFile.py/access?contribId=32&resId=0&materialId=slides&confId=7214
  145. 145.
    S.Yu. Taskaev, Phys. Part. Nucl. 46, 956 (2015)Google Scholar
  146. 146.
    Thomas E. Blue, Jacquelyn C. Yanch, J. Neuro-Oncol. 62, 19 (2003)Google Scholar
  147. 147.
    C.K. Wang, T.E. Blue, R. Gahbauer, Nucl. Technol. 84, 93 (1989)Google Scholar
  148. 148.
    J.C. Yanch et al., Med. Phys. 19, 709 (1992)ADSGoogle Scholar
  149. 149.
    Kyung-O Kim, Jong Kyung Kim, Soon Young Kim, Appl. Radiat. Isot. 67, 1173 (2009)Google Scholar
  150. 150.
    L. Weissman, M. Paul, Neutron-rich radioactive-ion production at SARAF phase-II, SNRC internal report (Soreq Nuclear Research Center, Yavne, Israel, 2013)Google Scholar
  151. 151.
    M. Hass et al., J. Phys. G: Nucl. Part. Phys. 35, 1 (2008)Google Scholar
  152. 152.
    I. Mukul et al., Nucl. Instrum. Methods Phys. Res. A 899, 16 (2018)ADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Michael Paul
    • 1
    Email author
  • Moshe Tessler
    • 1
  • Moshe Friedman
    • 1
  • Shlomi Halfon
    • 2
  • Tala Palchan
    • 1
  • Leonid Weissman
    • 2
  • Alexander Arenshtam
    • 2
  • Dan Berkovits
    • 2
  • Yosef Eisen
    • 2
  • Ilan Eliahu
    • 2
  • Gitai Feinberg
    • 2
  • Daniel Kijel
    • 2
  • Arik Kreisel
    • 2
  • Israel Mardor
    • 2
    • 3
  • Guy Shimel
    • 2
  • Asher Shor
    • 2
  • Ido Silverman
    • 2
  1. 1.Racah Institute of PhysicsHebrew UniversityJerusalemIsrael
  2. 2.Soreq Nuclear Research CenterYavneIsrael
  3. 3.School of Physics and AstronomyTel Aviv UniversityTel AvivIsrael

Personalised recommendations