Skip to main content
Log in

Particle decay from statistical thermal model in high-energy nucleus-nucleus collisions

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

In high-energy nucleus-nucleus collisions, it is difficult to measure the contributions of resonance strong decay and weak decay to the final measured hadrons as well as the corresponding effects on some physical observables. To provide a reference from statistical thermal model, we performed a systematic analysis for the energy dependence of particle yield and yield ratios in Au + Au collisions. We found that the primary fraction of final hadrons decreases with increasing collision energy and somehow saturates around \(\sqrt{s_{{\rm NN}}} = 10\) GeV, indicating a limiting temperature in hadronic interactions. The fraction of strong or weak decay for final hadrons shows a different energy dependence behavior comparing to the primarily produced hadrons. These energy dependences of various particle yield and yield ratios from strong or weak decay can provide us with baselines for many hadronic observables in high-energy nucleus-nucleus collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Adams et al., Nucl. Phys. A 757, 102 (2005)

    Article  ADS  Google Scholar 

  2. M.A. Stephanov, Prog. Theor. Phys. Suppl. 153, 139 (2004)

    Article  ADS  Google Scholar 

  3. B. Mohanty, Nucl. Phys. A 830, 899c (2009)

    Article  ADS  Google Scholar 

  4. Xiaofeng Luo, Nucl. Phys. A 956, 75 (2016)

    Article  Google Scholar 

  5. R. Vogt, Ultrarelativistic Heavy-Ion Collisions (Elsevier Science Ltd, 2007)

  6. J. Cleymans, B. Kämpfer, S. Wheaton, Phys. Rev. C 65, 027901 (2002)

    Article  ADS  Google Scholar 

  7. F. Becattini, J. Manninen, M. Gazdzicki, Phys. Rev. C 73, 044905 (2006)

    Article  ADS  Google Scholar 

  8. A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Nucl. Phys. A 789, 334 (2007)

    Article  ADS  Google Scholar 

  9. J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys. Rev. C 73, 034905 (2006)

    Article  ADS  Google Scholar 

  10. B. Abelev et al., Phys. Rev. C 88, 044910 (2013)

    Article  ADS  Google Scholar 

  11. M.M. Aggarwal et al., Phys. Rev. Lett. 105, 022302 (2010)

    Article  ADS  Google Scholar 

  12. L. Adamczyk et al., Phys. Rev. Lett. 112, 032302 (2014)

    Article  ADS  Google Scholar 

  13. L. Adamczyk et al., Phys. Rev. Lett. 113, 092301 (2014)

    Article  ADS  Google Scholar 

  14. L. Adamczyk et al., Phys. Lett. B 785, 551 (2018)

    Article  ADS  Google Scholar 

  15. Xiaofeng Luo, PoS CPOD2014, 019 (2015)

    Google Scholar 

  16. Xiaofeng Luo, Nu Xu, Nucl. Sci. Tech. 28, 112 (2017)

    Article  Google Scholar 

  17. L. Adamczyk et al., Phys. Rev. Lett. 112, 162301 (2014)

    Article  ADS  Google Scholar 

  18. N. Yu, Nucl. Phys. A 967, 788 (2017)

    Article  ADS  Google Scholar 

  19. N. Yu, D.W. Zhang, X.F. Luo, arXiv:nucl-th/1812.04291 (2018)

  20. S. Wheaton, J. Cleymans, M. Hauer, Comput. Phys. Commun. 180, 84 (2009)

    Article  ADS  Google Scholar 

  21. A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Nature 561, 321 (2018)

    Article  ADS  Google Scholar 

  22. Y. Akiba et al., Nucl. Phys. A 610, 139 (1996)

    Article  ADS  Google Scholar 

  23. L. Ahle et al., Phys. Rev. C 57, R466 (1998)

    Article  ADS  Google Scholar 

  24. L. Ahle et al., Phys. Lett. B 476, 1 (2000)

    Article  ADS  Google Scholar 

  25. J. Barrette et al., Phys. Rev. C 62, 024901 (2000)

    Article  ADS  Google Scholar 

  26. L. Ahle et al., Phys. Rev. C 60, 064901 (1999)

    Article  ADS  Google Scholar 

  27. L. Ahle et al., Phys. Lett. B 490, 53 (2000)

    Article  ADS  Google Scholar 

  28. J.L. Klay et al., Phys. Rev. Lett. 88, 102301 (2002)

    Article  ADS  Google Scholar 

  29. C. Alt et al., Phys. Rev. C 77, 024903 (2008)

    Article  ADS  Google Scholar 

  30. C. Alt et al., Phys. Rev. C 73, 044910 (2006)

    Article  ADS  Google Scholar 

  31. T. Anticic et al., Phys. Rev. C 69, 024902 (2004)

    Article  ADS  Google Scholar 

  32. S.V. Afanasiev et al., Phys. Rev. C 66, 054902 (2002)

    Article  ADS  Google Scholar 

  33. L. Adamczyk et al., Phys. Rev. C 96, 044904 (2017)

    Article  ADS  Google Scholar 

  34. B.I. Abelev et al., Phys. Rev. C 81, 024911 (2010)

    Article  ADS  Google Scholar 

  35. B.I. Abelev et al., Phys. Rev. C 79, 034909 (2009)

    Article  ADS  Google Scholar 

  36. J. Adams et al., Phys. Rev. Lett. 92, 112301 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Yu.

Additional information

Communicated by T. Biro

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data sources used in this article are all cited in the bibliography.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, N., Luo, X. Particle decay from statistical thermal model in high-energy nucleus-nucleus collisions. Eur. Phys. J. A 55, 26 (2019). https://doi.org/10.1140/epja/i2019-12691-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12691-8

Navigation